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Abstract

In recent years, the rapid advancement of large
language models (LLMs) has significantly re-
shaped the landscape of scientific research.
While LLMs have achieved notable success
across various domains, their application in
specialized fields such as lunar exploration re-
mains underdeveloped, and their full potential
in this domain has yet to be fully realized. To
address this gap, we introduce Lunar Twins,
the first LLMs designed specifically for lunar
exploration, along with a collaborative frame-
work that combines both large and small mod-
els. Additionally, we present Lunar_GenData,
a multi-agent collaborative workflow for gener-
ating lunar instructions, and establish the first
specialized lunar dataset, which integrates real
data from the Chang’e lunar missions. Lastly,
we developed Lunar_Eval, the first compre-
hensive evaluation suite for assessing the ca-
pabilities of LLMs in lunar exploration tasks.
Experimental validation demonstrates that our
approach not only enhances domain expertise
in lunar exploration but also reveals preliminary
indications of embodied intelligence potential.

1 Introduction

The Moon, Earth’s closest celestial neighbor, has
long been a focal point of human space explo-
ration (Pei et al., 2020). Since 2018, numerous
countries and organizations have updated their lu-
nar exploration strategies, establishing long-term
objectives such as the construction of large-scale
lunar research facilities and the execution of ex-
tended lunar missions (Wang et al., 2024b; Li et al.,
2019; Gaddis et al., 2023; Chai et al., 2024). The
complexity of lunar exploration missions contin-
ues to rise, driven by increasing communication
delays and limited prior knowledge of mission ob-
jectives. Consequently, there is a growing demand
for autonomous capabilities in spacecraft operating
within the Moon’s remote, unknown, and uncer-
tain environment (Zhang et al., 2024; Wang et al.,

2024c). With the rapid advancement and practi-
cal implementation of artificial intelligence (AI)
technologies, integrating AI into lunar exploration
to enhance spacecraft autonomy has become both
essential and feasible(Li et al., 2023).

The rise of LLMs, such as ChatGPT (OpenAI,
2022) and DeepSeek (Liu et al., 2024), has sparked
successive waves of AI innovation. Various spe-
cialized domains have utilized knowledge distil-
lation and supervised fine-tuning on open-source
foundational models, including Qwen (Bai et al.,
2023), LLaMA (Dubey et al., 2024), and Chat-
GLM (Zeng et al., 2022), with ongoing updates.
Despite these advancements, current models re-
main far from fully meeting the specific needs of
lunar exploration.

To address these challenges and support the re-
search and applications of the International Lu-
nar Research Station (ILRS) (Xu and Ou, 2023),
we have developed the first Earth-Moon collab-
orative twin model, Lunar Twins. This system
comprises two models: the “Chang’e” large model
and the “Yutu” small model, named after the Chi-
nese mythological figures of Chang’e, the Moon
goddess, and Yutu, the Jade Rabbit. Our key con-
tributions are summarized as follows:

• We propose an efficient human-machine in-
teraction framework that leverages LLMs for
resource-constrained lunar environments, as
illustrated in Figure 1.

• We design a multi-agent cooperative network
for generating lunar instructions and construct
a dataset that integrates data from the Chang’e
mission.

• We introduce twin models (Chang’e and Yutu-
Text) and a multimodal model (Yutu-VL) for
lunar exploration, incorporating a retrieval-
augmented generation (RAG) mechanism to
mitigate hallucinations.



Figure 1: The Earth-moon synergy framework led by Lunar Twins. The Earth control center sends simple task
instructions (e.g., "move 10 meters, avoid obstacles") to the lunar rover "Yutu" via the Queqiao-2 relay satellite.
After encryption and transmission, Yutu-Text optimizes the instructions for autonomous execution, including
environmental sensing, goal completion, and real-time feedback. ECC and noise filtering ensure reliable data
transmission over long distances.

2 Related Works

2.1 Frontiers of Space Exploration
Early lunar exploration rovers relied on remote
control (Kalery et al., 2010), while later systems,
such as Kirobo (Samani and Ceccarelli, 2021) and
Robonaut2 (Pataranutaporn et al., 2021), integrated
speech recognition and natural language process-
ing technologies to enable intelligent interaction.
In lunar and Mars exploration missions, includ-
ing "Yutu-2" (Ding et al., 2022a), "Spirit" (Morris
et al., 2010), and "Opportunity" (Squyres et al.,
2006), visual cameras for terrain mapping and in-
teractive path planning via ground control centers
have played a crucial role. Operators have opti-
mized the robots’ paths using visual data. More ad-
vanced systems, such as "Curiosity" (Welch et al.,
2013) and "Perseverance" (Mangold et al., 2021),
have achieved highly autonomous navigation by
integrating vision systems with path planning sub-
systems. "Zhurong" (Ding et al., 2022b) has sig-
nificantly enhanced positioning accuracy through
precise vision-based path planning.

2.2 LLMs and RAG in Science
In recent years, domain-specific LLMs have
emerged rapidly, particularly in fields character-

ized by stable multimodal terms, formats, and data
structures, such as healthcare (Wang et al., 2023),
law (Nguyen, 2023), education (Liu et al., 2023),
finance (Yang et al., 2023), and psychology (Yang
et al., 2024). These advancements highlight the
potential of LLMs in scientific research. Addi-
tionally, technologies such as Graph RAG (Edge
et al., 2024) and Agentic RAG (Singh et al., 2025)
have accelerated the integration of external mod-
ules. Through supervised fine-tuning on domain-
specific datasets and enhanced retrieval from lo-
cal knowledge bases, LLMs have demonstrated
remarkable adaptability, solidifying their value in
specialized fields and amplifying their scientific
and practical impact (Ling et al., 2023).

3 Lunar Dataset

3.1 Raw Data Collection

To ensure the diversity of the lunar corpus, we
collected extensive lunar-related text data from a
variety of sources (Xu et al., 2020; Yuan et al.,
2021; He et al., 2023), including lunar exploration
textbooks, literatures and historical mission records.
These datasets encompass a broad range of topics
relevant to lunar exploration, and the statistics for
the pre-training corpus are presented in Table 1.



Figure 2: Illustration of the Multi-Agents Cooperative Network for lunar datasets generation and optimization.
*Note: The Simpsons family images shown here are included solely for illustrative purposes and do not imply any
endorsement, affiliation, or official authorization by the rights holders.

Type Task Description #Samples

Textbook

Lunar Wiki Lunar-related knowledge points 61973
Lunar News A compilation of past lunar-related events 133049
Lunar Instruct Content designed to enhance instruction representation capabilities for tasks 71653
Lunar Exam Professional questions for evaluation 13625
Lunar Poetry Chinese poetry celebrating the Moon 30639
Lunar Gen QA dataset distilled from GPT-4 101343

Literatures Lunar Paper A collection of academic papers 12280

Multimodal Lunar Mission Data released from the Chang’e Mission 37324

Table 1: Pre-training data statistics and sources for Lunar Twins.

Figure 3: Statistics of final instruction Lunar dataset, showing the data volume (262.3M tokens) used for supervised
fine-tuning (SFT), categorized by various themes such as Science, Tech & Engineering, and Humanities & Social
Science. The dataset incorporates 17.11GB of Lunar Text, 16.2GB of literature, and 40.9M instruction tokens, with
additional multimodal data (176GB) and specific mission payloads, including PCAMR (Panoramic Camera).



Relying solely on textbook knowledge is insuffi-
cient for developing a lunar large model capable of
executing real-world tasks. Successful lunar mis-
sions require practical experience, expert insights,
and even intuition. To address this, we also col-
lected data from China’s Chang’e missions1. De-
tailed mission information can be found in Ap-
pendix B, with data types listed in Appendix C.

3.2 Instruction Generation with Multi-Agents

Employing a cooperative multi-agent network
architecture (see Figure 2), we introduce Lu-
nar_GenData—a domain-specific instruction-
generation framework that leverages two com-
plementary fine-tuning strategies, namely task-
adaptive parameter optimization and context-driven
data augmentation, to produce high-fidelity instruc-
tion datasets precisely tailored to the operational
profiles of the Chang’e and Yutu models.

Algorithm 1 Lunar Instruction Generation
Require:
Dataset T , format as (Inst, Input & Output);
Science Corpus C;
Pre-defined Rule sets R1 and R2 for Filtering
Ensure:
Chang’E dataset DC and Yutu dataset DY

� Initialization:
1: Initialize datasets: DC ← ∅, DY ← ∅
� Proliferation Generation:
2: For each sample in T do:
3: Inst, Input & Output← sample
4: enriched_sample← Enrich(Instruction, C)
5: refined_sample← Refine(enriched_sample)
6: DY ← DY ∪ refined_sample
7: End for
� Rule-Based Filtering (R1):
8: For each sample in DC do:
9: Apply R1, discard invalid samples
10: End for
� Agent-Based Selection (R2):
11: For each sample in DY do:
12: Apply R2, retain high-quality samples
13: DC ← DC∪ Filter(DY , R2)
14: End for
15: Data Optimization: Refine DY

Return DC & DY

1https://moon.bao.ac.cn/

3.3 Multi-agents Cooperation Network
Reproductive Generation Strategy. We pro-
pose a reproductive generation strategy inspired by
biological reproduction. Specifically, initial parent
samples generated by ChatGPT (o1) are selected
from a parent dataset. These samples undergo a
reproductive process facilitated by collaboration
among multiple agents. The reproductive process
consists of two key stages:

• Sample Depth Expansion: Agents enhance
the selected samples by incorporating lunar
science-related background knowledge from
the corpus, resulting in more detailed and in-
formative child samples.

• Self-Organizing Evolution: Agents generate
samples with higher-level details and logical
coherence based on a specific theme or con-
cept, thereby improving the expression and
applicability of the child samples.

Dataset Distillation and Optimization. To en-
hance the quality of the dataset and optimize the
training effectiveness of smaller models, we em-
ploy a knowledge distillation strategy. Through
rigorous filtering by the agents, the reproductive
samples are assessed based on criteria such as con-
tent completeness, background consistency, and
semantic accuracy. Samples that fail to meet these
quality standards are discarded, while only high-
quality data are retained. The selected samples
then undergo further refinement, including noise
reduction, logical reinforcement, and linguistic pre-
cision enhancement. More details can be found in
Appendix E.

The two datasets were used to train the Chang’e
large model and the Yutu small model, with the
specific process outlined in Algorithm 1. Dataset
statistics are presented in Figure 3. Subsequently,
10% of the examples were extracted for testing
the dataset quality. Final evaluations on factual
accuracy, relevance, and data freshness indicated
that 97.3% of the data met the research standards.

4 Training and evaluation

4.1 Training and Experimental Setup
The inaugural Chang’e, Chang’e-9B, is derived
from ChatGLM-4-9B and trained using a multi-
stage approach: first, continual domain-adaptive
pre-training on a large-scale, diverse lunar-centric
corpus DC , followed by targeted fine-tuning via

https://moon.bao.ac.cn/


Figure 4: Workflow for processing lunar-related articles and utilizing RAG for enhanced question answering. Panel
A illustrates the process of collecting and preparing original articles, including relevance discrimination, conversion
to Markdown, and removal of irrelevant information. Panel B demonstrates an example of RAG applied to a question
about Chang’e 6 mission, where the documents are split into chunks, relevant sections from scientific articles are
retrieved, and the enhanced answer provides more detailed information compared to a response without RAG.

Low-Rank Adaptation (LoRA) (Hu et al., 2021).
While primarily designed for lunar exploration,
Chang’e-9B also retains broad applicability across
general domains, including entertainment, encyclo-
pedic knowledge, and question answering.

In parallel, the Yutu family (Yutu-Text and
Yutu-VL) is built upon MiniCPM3 and MiniCPM-
o 2.6 base models, which underwent continual
pre-training and full-parameter fine-tuning using a
knowledge-distilled, optimized dataset DY . This
process is specifically tailored to enhance fine-
grained reasoning and semantic expression capabil-
ities on high-fidelity lunar tasks. Comprehensive
experimental details are provided in Appendix D.

4.2 Retrieval-augmented Generation

As previously mentioned, we crawled a substantial
number of academic articles from Web of Science2

and CNKI3 on the topic of "lunar exploration."
These articles were then analyzed using LLMs for
relevance, resulting in the selection of 10,481 com-
plete PDF documents (4,770 in Chinese and 5,711
in English). Subsequently, we employed the open-
source tool MinerU (Wang et al., 2024a) to convert
these documents into Markdown format, creating a
local database.

To ensure data quality and consistency, further

2https://www.webofscience.com/wos/
3https://www.cnki.net/

processing of the collected dataset was required.
Regular expressions were applied to filter out ex-
traneous spaces, line breaks, and other non-text
characters. The processed files encompass a range
of lunar exploration topics, including astrophysics,
geology, and aerospace.

In this work, we leverage RAG to enhance lunar
exploration knowledge modeling, benefiting both
the Chang’e and Yutu models by improving their
precision on specialized queries and reducing hal-
lucinations. For the RAG processing, we selected
LightRAG (Guo et al., 2024), one of the most effi-
cient solutions currently available. The approach
for RAG is illustrated in Figure 4.

4.3 Benchmark Evaluation
Given the absence of a dedicated benchmark
dataset for lunar exploration, we developed a set of
multiple-choice and single-choice questions related
to lunar exploration, for the text-based evaluation
of the Chang’e large model and the Yutu small
model. This set is referred to as Lunar_Eval, as
illustrated in Figure 5. To ensure the fairness and
reliability of the evaluation results, we conducted
a manual assessment involving five annotators, all
PhD candidates in astronomy. The annotators per-
formed pairwise comparisons of each question and
its corresponding answer choices. A total of 200
responses, generated by Lunar Twins and their base
models, were presented for evaluation.

https://www.webofscience.com/wos/
https://www.cnki.net/


Figure 5: Lunar_Eval for evaluation.The eval includes both single-choice and multiple-choice questions across six
major themes, totaling 15,000 questions. The difficulty distribution of the Lunar Eval follows an approximate 3:4:3
ratio. For detailed dataset definitions, refer to Appendix A and Figure 10.

Model Avg. SE HS TE AD BS HM
zh / en zh / en zh / en zh / en zh / en zh / en zh / en

Internlm2.5-7B-Chat 71.5/83.7 71.8/84.0 69.6/81.4 73.1/83.2 70.4/84.2 74.3/83.4 69.5/85.8
Yi-1.5-6B-Chat 62.2/62.2 61.0/60.1 60.7/60.3 64.8/60.3 62.2/61.0 62.9/61.0 61.7/70.8
Qwen2.5-7B-Instruct 71.0/84.7 68.5/84.9 68.4/81.8 70.9/82.8 70.0/83.4 72.0/85.3 76.0/90.0
LLaMA3.1-8B-Instruct 65.1/78.1 64.0/85.9 62.9/84.3 66.4/85.5 64.7/58.5 65.2/60.0 67.5/94.2
ChatGLM3-6B 67.5/82.3 66.5/82.3 68.2/80.6 66.7/80.0 67.3/81.9 67.1/80.6 69.5/88.3
Qwen2-7B-Instruct 65.3/84.3 62.8/83.4 63.3/83.0 65.2/82.1 63.9/84.5 63.2/85.1 70.8/82.5
Gemma-2-9B 70.8/82.5 69.9/81.5 69.5/81.4 70.5/83.1 70.6/82.9 73.2/83.9 70.8/82.5
ChatGLM-4-9B 68.0/81.7 66.7/81.5 67.7/79.8 71.0/81.3 67.5/85.8 67.7/80.2 67.5/88.3
MiniCPM-3-4B 46.8/62.6 46.5/59.9 47.4/59.9 47.9/59.9 46.5/63.5 50.0/62.1 42.2/70.0
Chang’e (Ours) 73.6/88.0 74.4/88.1 72.5/87.2 73.5/88.2 75.3/88.3 73.3/88.2 75.3/90.0
Yutu-Text (Ours) 72.8/86.9 74.2/85.4 71.4/86.0 72.1/87.3 71.8/86.1 73.5/87.6 74.0/89.2

Table 2: Single choice zh/en results of Lunar Eval. ‘Avg.” measures the micro-average accuracy. ’SE’ stands for
Science. ’HS’ stands for Humanities & Social Science. ’TE’ stands for Tech & Engineering. ’AD’ stands for Art &
Design. ’BS’ stands for Business. ’HM’ stands for Health & Medicine.

Model Avg. SE HS TE AD BS HM
zh / en zh / en zh / en zh / en zh / en zh / en zh / en

Internlm2.5-7B-Chat 64.1/76.0 70.2/78.0 65.6/79.5 62.4/90.2 72.1/69.2 52.8/56.8 61.3/82.0
Yi-1.5-6B-Chat 61.0/62.4 57.6/63.4 61.6/62.6 58.6/51.5 65.9/63.1 70.2/52.5 51.9/61.1
Qwen2.5-7B-Instruct 75.0/86.7 59.3/77.4 73.2/69.9 83.2/86.6 80.8/81.1 80.1/85.8 73.4/79.5
LLaMA3.1-8B-Instruct 74.6/84.8 67.7/85.2 76.2/75.2 71.9/89.8 81.1/76.8 76.2/96.7 74.2/84.9
ChatGLM3-6B 68.7/81.2 71.6/77.2 61.2/84.8 69.6/81.6 61.9/69.6 71.7/84.8 76.5/79.2
Qwen2-7B-Instruct 66.3/80.3 62.0/84.1 73.8/70.3 53.3/76.4 73.9/78.6 50.9/87.4 83.7/74.9
Gemma-2-9B 66.1/74.1 58.9/68.1 65.1/72.7 66.0/70.3 63.3/74.0 59.6/89.2 83.4/70.6
ChatGLM-4-9B 69.9/78.3 74.1/66.2 57.3/89.9 63.7/80.4 66.5/67.7 79.1/85.8 79.0/80.0
MiniCPM-3-4B 46.7/62.2 52.0/52.0 44.7/52.7 43.8/67.3 49.1/75.7 42.4/63.0 48.2/62.3
Chang’e (Ours) 74.0/72.3 74.0/78.7 84.7/81.7 65.7/74.0 76.6/81.8 65.5/70.7 77.7/77.1
Yutu-Text (Ours) 79.3/82.9 79.1/69.5 78.6/80.7 75.4/69.8 79.2/79.1 80.5/95.1 83.2/83.2

Table 3: Multiple choice zh/en results of Lunar Eval. The optimal value is in-bold and the suboptimal is underlined.



The evaluation was based on two criteria: cor-
rectness and helpfulness. Correctness measures
whether the response provides accurate scientific
knowledge to address the posed question, while
helpfulness assesses whether the model can assist
the user in a concise and effective manner, taking
user intent into account. In practice, an answer may
be correct but still not helpful if it is excessively
verbose or lacks clarity. To determine the final re-
sult for each evaluation instance, we employed a
majority voting approach. If at least two annotators
agreed, their preference was considered the final
answer; otherwise, the outputs from both models
were regarded as a tie.

For the multi-modal evaluation of the Yutu
model, we conducted a detailed comparison with
ChatGPT-4 in Section 5.2.

5 Result

5.1 Performance Analysis Results

Lunar Twins showed superior performance com-
pared to LLMs of similar scale. In Table 2 and Ta-
ble 3, we compare the performance of the Chang’e
large model and the Yutu small model against
their respective base models (ChatGLM-4-9B and
MiniCPM3) as well as against other open-source
models with similar parameter scales. Using both
automated and human evaluators, we calculated
the win rates relative to these baselines. Across
most tasks, Lunar Twins consistently outperforms
models of comparable size, validating the effective-
ness of the proposed approach. The distribution
of difficulty-level evaluation results is presented in
Table 4 and Table 5.

Lunar Twins Receives Greater Preference.
Consistent with previous results, Lunar Twins out-
performs its base models in manual evaluations.
Figure 6 show that the Chang’e model generates
more accurate answers compared to ChatGLM-4,
with 48% of its responses rated as the top choice
by domain experts. In addition to correctness, the
Yutu model particularly excels in helpfulness. Com-
pared to correctness, Lunar Twins shows more sig-
nificant improvement in helpfulness. This aligns
with expectations, as the core goal of supervised
fine-tuning (SFT) is to enhance the instruction-
following ability of LLMs (Zhang et al., 2023),
enabling them to better meet the diverse needs of
users, rather than merely expanding their knowl-
edge domain. More experimental results are pre-
sented in Appendix F.

Figure 6: Results of manual evaluation of Lunar Twins
and base models,with assessment based on correctness
and helpfulness.

Model Easy Medium Hard
zh / en zh / en zh / en

Internlm2.5-7B-Chat 61.1/60.1 63.8/60.4 62.7/61.8
Yi-1.5-6B-Chat 47.0/59.6 48.5/62.2 46.4/61.2
Qwen2.5-7B-Instruct 71.6/85.8 73.7/87.5 71.2/86.2
LLaMA3.1-8B-Instruct 66.8/80.8 67.4/81.0 67.5/81.5
ChatGLM3-6B 63.3/84.1 64.6/83.5 64.8/82.6
Qwen2-7B-Instruct 71.0/83.1 72.3/83.7 71.5/82.6
Gemma-2-9B 69.9/81.5 69.1/80.9 70.3/83.1
ChatGLM-4-9B 69.4/82.1 70.7/84.1 70.3/83.6
MiniCPM-3-4B 63.4/84.8 65.7/86.5 65.5/86.0
Chang’e (Ours) 72.1/87.6 74.3/88.5 72.8/87.2
Yutu-Text (Ours) 67.5/81.6 79.9/80.6 67.4/81.3

Table 4: Single choice zh/en results of Lunar Eval.
‘Easy’ represents the easy questions, ‘Medium’ repre-
sents medium difficulty questions, and ‘Hard’ represents
the hard questions.

Model Easy Medium Hard
zh / en zh / en zh / en

Internlm2.5-7B-Chat 66.0/60.6 68.8/52.7 66.3/60.3
Yi-1.5-6B-Chat 52.6/60.3 51.1/69.8 41.8/57.5
Qwen2.5-7B-Instruct 69.4/82.6 72.1/75.9 71.7/89.2
LLaMA3.1-8B-Instruct 73.6/72.5 63.0/88.0 80.9/88.0
ChatGLM3-6B 64.1/73.3 65.6/76.9 79.0/65.5
Qwen2-7B-Instruct 66.7/90.8 80.6/75.6 71.8/70.7
Gemma-2-9B 68.0/72.8 60.7/77.3 83.5/77.6
ChatGLM-4-9B 57.7/74.4 53.1/76.6 70.6/67.7
MiniCPM-3-4B 54.0/88.6 91.7/91.8 60.7/84.2
Chang’e (Ours) 74.5/77.8 69.8/76.3 79.3/67.6
Yutu-Text (Ours) 77.2/79.7 81.3/92.1 70.8/81.0

Table 5: Multiple choice zh/en results of Lunar Eval.

5.2 Case Study
Furthermore, we present a multi-modal case study
in Figure 7, which demonstrates the advantages
of the Yutu model over GPT-44. The results indi-
cate that Lunar Twins exhibits a superior level of
expertise in describing lunar exploration research.
Its outputs provide detailed, context-specific in-
formation closely aligned with the mission back-
ground—whereas GPT-4’s outputs remain at a
more general level, focusing primarily on surface
morphology and physical characteristics.

4https://openai.com/index/gpt-4/

https://openai.com/index/gpt-4/


Figure 7: Comparison between Yutu-VL and ChatGPT-4 outputs. The left panel shows the result of Yutu-VL,
which provides more detailed background information in red text about the landscape on the moon’s far side as
captured by the Chang’e-4 probe. The right panel shows ChatGPT-4’s output, which includes a more general
description of the moon’s surface features. Both outputs are presented in Chinese and English, highlighting the
difference in detail and relevance of the background information.

5.3 On-Device Language Models

Due to the high adaptability of the MiniCPM-
V base model on edge devices, we conducted
performance tests on MiniCPM-V2.0 (2.8B) and
MiniCPM-V2.5 (8B) on mobile devices, following
the official documentation5. The testing environ-
ment consisted of a Snapdragon 8 Gen 3 platform
with 16 GB of RAM. The results demonstrated
that these two models achieved smooth inference
speeds of 16.17 tokens/s and 8.62 tokens/s, respec-
tively, highlighting their strong real-time inference
capabilities on mobile devices.

Building on this, we successfully deployed
the fine-tuned Yutu model on the RK3588 pro-
cessor platform and achieved preliminary hu-
man–machine dialogue interaction. This marks an
important step toward enabling the Yutu model to
support complex environmental perception, robotic
arm control, and planning tasks in offline lunar
rover applications under constrained hardware con-
ditions. We consider this deployment a solid techni-
cal foundation for advancing future on-device lunar
mission capabilities.

5https://github.com/OpenBMB/MiniCPM-o

6 Conclusion

This study addresses the limitations of current
LLMs in the domain of lunar exploration by propos-
ing and developing the first twin system specifically
tailored for this field, named Lunar Twins. The sys-
tem consists of the "Chang’e" large model and the
"Yutu" smaller model. We introduce a collabora-
tive framework that harnesses the synergy between
large and small language models, facilitating effi-
cient human-machine interaction through natural
language instructions, particularly in the resource-
constrained environment of lunar exploration.

Additionally, we have constructed a specialized
dataset that integrates real lunar exploration mis-
sion data and designed a multi-agent collabora-
tive workflow to generate a lunar surface-specific
corpus. This approach helps address the knowl-
edge gaps in mainstream pre-trained models, which
often overlook the unique aspects of lunar explo-
ration. Experimental evaluations demonstrate that
our models outperform similar-scale baseline mod-
els in a variety of lunar exploration tasks, underscor-
ing their potential value in specialized domains.

https://github.com/OpenBMB/MiniCPM-o
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Limitations

Hallucination There is existing evidence indicat-
ing that the distribution of pre-training and instruc-
tion data may suffer from significant bias, which
can negatively impact the quality of model outputs
(Ji et al., 2023). A substantial portion of the data
used in Lunar Twins is synthesized by LLMs. Al-
though manual review was conducted, the overall
quality still cannot match that of human-annotated
data. While the introduction of RAG techniques
has alleviated this issue to some extent, from a sci-
entific perspective, this is not the optimal solution.

Lack of Evidence for Embodied Intelligence
There is a lack of sufficient evidence regarding
the embodied intelligence capabilities of the Yutu
model. Although, theoretically, Yutu provides a po-
tential solution for autonomous lunar exploration
based on vision-language models (VLMs), we cur-
rently lack a quantitative understanding of its intel-
ligence level, interaction logic, and stability.

Ethics Statement

In conducting our research, we prioritize the high-
est ethical standards to ensure integrity and make
a positive contribution to the scientific community.
We exclusively use open-source datasets, ensuring
that our work is built upon accessible and transpar-
ent resources. Our methods employ models that are
either open-source or widely recognized for their
reliability and ethical use within the academic com-
munity. Additionally, we have carefully designed
our methodology to prevent the generation of harm-
ful or misleading information, thus safeguarding
the integrity of our findings.
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A Explanations of Lunar Issues

To provide researchers with a clear and organized
resource, lunar science data has been categorized
into six major topics following discussions with
multiple experts in lunar exploration and planetary
remote sensing. Below are the detailed explana-
tions of each topic:

1. Art and Design.This theme explores the ap-
plication of lunar-related concepts within the
fields of art and design. It includes the rela-
tionship between color and light, the expres-
sion of cultural symbols, and how modern de-
sign can present scientific research findings.

2. Business. Focused on the commercialization
potential of lunar exploration and develop-
ment, this topic covers market trend analysis,
corporate investment activities, and economic
value assessments.

3. Science. Dedicated to foundational scientific
questions related to the Moon, this theme in-
cludes research on gravity, astrophysics, as-
trometry, and lunar geological characteristics.

4. Health and Medicine.This topic investigates
the short-term and long-term effects of the
Moon’s low gravity and radiation environment
on human health, providing support and data
for space medicine.

5. Humanities and Social Science. This theme
explores the symbolic significance of the
Moon in human culture, along with its inter-
pretation and legacy across different cultural
contexts.

6. Tech and Engineering. Focused on the tech-
nological and engineering aspects of lunar ex-
ploration, this topic includes infrastructure de-
velopment, energy utilization, and equipment
research and development.

B Introduction to the Chang ’e Missions

Timeline Figure 9 highlights the evolution of LLMs
from 2013 to 2024, marking key advancements
alongside lunar exploration milestones. Key lunar
events, such as Chang’e-3 (2014) and Chang’e-6
(2024), are shown in black boxes for reference. 6

C Example for the Yutu-VL dataset

It is important to note that during the fine-tuning
process of Yutu-VL, we enhanced domain adapta-
tion by incorporating real data from the Chang’e
series of lunar exploration missions. For example,
high-resolution remote sensing images (Figure 8)
and geological spectral data serve as the foundation
for studying lunar material composition, topograph-
ical features, and environmental changes.

D The experimental setup

The detailed information of LLMs experimental
settings are shown in Table 6

Hyperparameter Setting

Fine-tuning method LoRA
Batch Size 512
Device Nvidia A100
GPU number *8
Learning Rate (LR) 0.001
LoRA r 8
LoRA α 16
LoRA Dropout 0.05
Epoch 3

Table 6: Detailed experimental settings.

6Data from Chang’e-6 is expected to be released in June
2025 and is therefore not included
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Figure 8: Sample data display from the Chang’e-series missions. On the left, an image of the lunar surface captured
by the Chang’e-4 panoramic camera, processed for display and analysis. On the right, the corresponding scientific
data and metadata in XML format, including details such as capture time, location, instrument settings, and other
relevant information essential for interpreting the image.

Figure 9: Timeline of LLM Evolution. This timeline illustrates the key milestones in the evolution of LLMs,
highlighting landmark advances such as Word2Vec, GANs, Transformers, BERT, GPT series, and specialized
techniques like RAG, LoRA, CoT, and domain-specific LLMs. Notably, it also aligns these developments with
major milestones in China’s lunar exploration program, including the Chang’e 3, 4, 5, and 6 missions, emphasizing
the parallel progress of AI and space exploration.

Figure 10: Lunar_Eval’s Word Cloud Map of Subject Topic Distribution



E Details of the Multi-agent Network

To systematically present the application of the
multi-agent cooperation network in data construc-
tion, we provide a formal description covering the
network structure, generation pipeline, and diver-
sity control, ensuring clarity and reproducibility.

We formalize the cooperation process as a di-
rected acyclic graph (DAG):

G = (V, E)

where:

• V = {vi}ni=1 is the set of nodes, each repre-
senting an agent responsible for generation,
transformation, or evaluation tasks;

• E = {⟨vi, vj⟩ | vi, vj ∈ V, i ̸= j} is the set of
directed edges indicating information flow.

Each node vi is associated with an agent ai =
ρ(vi), where ρ maps the node to a foundation
model, domain-specific tools, and role-specific
memory. For each edge ⟨vi, vj⟩, interaction as:

τ(ai, aj) =
(
ai

request−−−−→ aj , aj
response−−−−→ ai

)m

where m is the number of reflection-refinement
cycles, and only the final artifact A(m)

j is propa-
gated.

The topological ordering satisfies:

∀⟨vi, vj⟩ ∈ E , I(ai) < I(aj)

ensuring an ordered, non-circular workflow.
Given the input task dataset:

T = {(Ii, Xi, Yi)}Ni=1

where Ii is the instruction, Xi the input, and Yi
the expected output, we first sample:

A(0) = Sample(I,X)

Agents then apply transformation functions ϕvj (·):

A(t+1) = ϕvj (A
(t)), for ⟨vi, vj⟩ ∈ E

with each transformation comprising:

• Knowledge Enrichment:

A(t)′ = ϕenrich(A
(t) | C)

where C is external knowledge;

• Refinement:

A(t+1) = ϕrefine(A
(t)′)

We define an evaluation function ψ : Artifact →
[0, 1] to score artifacts:

σk = ψ(A(k))

Artifacts are retained if:

Dfinal =
{
A(k) | σk ≥ θ

}
, θ ∈ (0, 1)

To encourage diversity, we apply:

• Sampling with a high temperature (T > 0.8);

• Introducing heterogeneous roles ( “optimistic”
and “critical”) to ensure varied perspectives.

We remove redundant samples by semantic similar-
ity sim(Ai, Aj), defining:

Dpruned = {Ai ∈ Dfinal | ∀j < i, sim(Ai, Aj) < δ}

where δ is a predefined similarity threshold.

F Additional experimental results

Model Selection Rationale
In the early-stage experimental phase, we con-
structed a test set of 1,000 examples for each of
three key evaluation dimensions:

1. Domain knowledge, assessed via accuracy;

2. Alignment with user preferences via ROUGE;

3. Collaboration efficacy, measured through
Parse Rate and semantic similarity.

Table 7: Early-Stage Model Selection Results

Model Acc ROUGE Parse Rate Similarity

Qwen2.5-7B 71.3% 62.4 85.6% 78.9%
LLaMA3.1-8B 73.1% 64.0 87.2% 80.4%
ChatGLM-4-9B 74.8% 68.3 91.5% 85.7%

We benchmarked several leading open-source
models under 14B parameters, including Qwen2.5-
7B-Instruct, LLaMA3.1-8B, and ChatGLM-4-9B.
As summarized in Table 7, ChatGLM-4-9B consis-
tently outperformed its counterparts, achieving the
highest scores across all evaluation metrics, namely
74.8% accuracy in domain knowledge tasks, a
ROUGE score of 68.3 for preference alignment,
a Parse Rate of 91.5%, and a similarity of 85.7%.



Comparison with State-of-the-Art LLMs
To further validate the performance of our proposed
models, we conducted additional evaluations com-
paring them against several state-of-the-art (SOTA)
LLMs, including DeepSeek-R1, DeepSeek-V3-
0324, as well as ChatGPT-o1 and o4 mini high.

These SOTA models achieved superior scores,
largely attributable to their larger parameter scales
and advanced reasoning capabilities, such as Chain-
of-Thought (CoT)-based inference mechanisms
(see Table 8). For instance, the Chang’e model
lags behind DeepSeek-V3 by approximately 4.3%
on specific evaluation metrics, underscoring the
inherent limitations of smaller models: even with
fine-tuning, they cannot surpass cutting-edge sys-
tems when evaluated under identical benchmark.

Table 8: Comparison with State-of-the-Art LLMs

Model Single ZH/EN Multi ZH/EN

DeepSeek-R1 80.2 / 94.3 84.5 (↑5.2) / 92.5
DeepSeek-V3 78.9 / 91.6 81.3 / 90.7
ChatGPT-o1 79.6 / 95.0 82.0 / 93.1
o4 mini high 82.4 (↑9.8) / 96.7 (↑8.7) 83.1 / 94.2 (↑7.5)

Ablation Study on Generation Methods
To further highlight the contributions of our work-
flow design, we conducted an ablation study com-
paring our proposed data generation method, Lu-
nar_GenData, against existing approaches, includ-
ing DOINSTRUCT (Bi et al., 2023) and direct dis-
tillation from GPT-4. We reconstructed 5,000 data
samples using each method and evaluated the out-
puts. The results, summarized in Table 9, clearly
demonstrate that our Lunar_GenData method sig-
nificantly outperforms both OceanGPT’s DOIN-
STRUCT and direct GPT-4 distillation across all
evaluation dimensions.

Table 9: Ablation Study on Generation Methods

Method ROUGE Mean Opinion Score GPT-4-Score

Lunar_GenData 89.5 4.4 8.1
DOINSTRUCT 64.4 3.1 5.7

Distillation 38.0 2.7 3.5

Effect of Number of Agents in Network
We further investigated how the number of nodes in
the collaborative agent network affects data quality.
Specifically, we conducted experiments using 2,
3, 4, and 5-agent configurations, all based on the
Qwen2.5-7B backbone, to evaluate the impact of
increasing expert participation.

The results, summarized in Table 10, show that
as the number of expert agents increases, the over-
all generation quality improves consistently across
all evaluation metrics. This non-linear improve-
ment highlights the emerging collaborative effect
of the multi-agent mechanism in enhancing seman-
tic understanding and multi-task integration.

Table 10: Impact of Number of Agents on Data Quality

Number of Agents ROUGE ↑ MOS ↑ GPT-4-Score ↑

2 Experts 61.7 3.1 5.3
3 Experts 69.2 3.5 6.7
4 Experts 75.8 4.0 7.5
5 Experts 83.9 4.4 8.9

Cross-LLM Comparisons on the Same Dataset

We further evaluated the performance of fine-tuned
models across different base LLMs using our lu-
nar dataset. Specifically, we compared models
fine-tuned on Qwen2.5-7B, LLaMA3.1-8B, and
ChatGLM4-9B.

Table 11: Performance Comparison of Different LLMs
Fine-Tuned with Lunar Data

SFT with Lunar Data Single ZH/EN Multi ZH/EN

Qwen2.5-7B 73.1 / 86.3 77.4 / 88.3
LLaMA3.1-8B 69.9 / 81.6 74.6 / 86.5
ChatGLM4-9B 73.6 / 88.0 74.0 / 72.3

As summarized in Table 11, while Qwen and
LLaMA marginally outperform ChatGLM on cer-
tain tasks, ChatGLM remains the most suitable
foundation for our system, primarily due to its su-
perior compatibility and collaborative performance
with small models.

G Detailed Analysis of RAG

Why RAG Remains Necessary After SFT

While supervised fine-tuning (SFT) can inject sub-
stantial domain knowledge into the base model, it
cannot fully resolve issues such as hallucination
or capture rapidly evolving knowledge beyond the
training corpus.

As shown in Figure 4 of the main paper,
when LunarTwins was tasked with evaluating the
Chang’e-6 mission (the latest mission, highlighted
in Figure 9), it failed to provide accurate answers
without RAG, despite the fine-tuning dataset in-
cluding 1,542 expert-curated samples related to



Chang’e-6’s lunar far side sample return. This fail-
ure occurred because the training corpus did not
explicitly cover this information. However, when
equipped with RAG, Lunar Twins successfully re-
trieved correct details, including the precise landing
site in the South Pole–Aitken Basin. These tests
were controlled such that the only variable was the
presence or absence of RAG.

Moreover, lunar exploration instructions are
highly specialized and detailed, making it impracti-
cal for model weights alone to memorize all knowl-
edge. RAG offers a practical “temporary memory”
mechanism, essential in offline lunar mission en-
vironments, by enabling the model to look up and
use relevant external knowledge as needed.

Contributions of SFT vs. RAG

Finally, we highlight two key findings:
Q1: Is fine-tuning sufficient, with RAG offer-

ing only marginal benefits?
A: RAG plays a critical role in low-tolerance,

high-stakes lunar scenarios where untrained or
missing knowledge can lead to factual errors. It
serves as an essential complement by dynamically
retrieving unseen or evolving information.

Q2: Which contributes more to overall per-
formance — SFT or RAG?

A: Supervised fine-tuning (SFT) is the primary
driver, significantly enhancing lunar domain rea-
soning and task alignment. For example, our Yutu
model improves over its base MiniCPM by +26%
on Chinese single-choice tasks, while RAG con-
tributes an additional +9.5%.

In summary, SFT equips the model with foun-
dational expertise, and RAG supplies dynamic,
precision-driven knowledge retrieval, mitigating
hallucinations and closing knowledge gaps.

H Future Work

Looking ahead, we identify several key directions
to extend and deepen this research.

First, we will publicly release the developed
dataset on Hugging face and GitHub following the
review process, leveraging the visibility and influ-
ence of the NLP research community to promote
its use and encourage further innovation in lunar-
focused applications.

Second, while the current system is primarily
designed for question-answering (QA) tasks, future
work will advance toward reasoning-capable mod-
els that can perform multi-step inference, causal

analysis, and complex decision-making aligned
with the challenges of lunar exploration scenarios.

Third, we plan to integrate these models into
onboard lunar rover systems, moving beyond
software-only evaluations to embodied intelli-
gence. This effort will require adapting models for
resource-constrained environments and enabling
real-time perception, robotic arm control, and au-
tonomous planning in offline lunar conditions. We
have already completed supplementary tests de-
ploying the fine-tuned Yutu-VL and Yutu-Text mod-
els on the RK3588 development board, providing a
promising technical foundation, although full sys-
tem integration will demand further engineering
efforts.

Fourth, we recognize that our current evaluation
benchmarks, while insightful, have relatively low
difficulty levels, enabling even small models to
achieve comparably high scores. Future work will
focus on developing more comprehensive, fair, and
high-impact benchmark suites specifically tailored
to the unique demands of lunar exploration tasks,
ensuring robust and meaningful evaluations across
models.

Finally, although we have demonstrated the ben-
efits of RAG in the current system, we will con-
tinue refining its integration, including optimizing
retrieval strategies, enhancing dynamic context se-
lection, and testing RAG-enhanced models under
more open-ended and complex task settings.

The Moon, a perennial nexus of human ex-
ploratory ambition, has historically seen missions
characterized by substantial reliance on human ex-
pertise and direct manual intervention. The contem-
porary efflorescence of NLP and LLMs signifies
a paradigm shift, offering transformative potential
for enhancing the autonomy, safety, and scientific
yield of future lunar missions, including ambitious
multinational endeavors for the International Lunar
Research Station (ILRS).

We fully acknowledge that bringing this pro-
found vision to fruition will require a prolonged,
intellectually challenging, and deeply collaborative
research journey.

“We choose to go to the moon. We choose to go
to the moon in this decade and do the other things,
not because they are easy, but because they are
hard.”

—On September 12, 1962, at Rice University,
President John F. Kennedy delivered his historic
speech on the nation’s space effort.


