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Abstract
The deployment of large language models (LLMs) in lunar exploration presents
significant challenges, demanding robust reasoning capabilities under conditions of
partial observability, dynamic constraints, and severe resource limitations. Existing
benchmarks, however, often overlook these critical aspects, primarily focusing on
static and context-agnostic tasks. To address this gap, we introduce Lunar-Bench,
the first benchmark specifically designed to evaluate LLMs in realistic lunar mission
scenarios. Derived from authentic mission protocols and telemetry data, Lunar-
Bench comprises 3,000 high-fidelity tasks across diverse operational domains and
varying difficulty levels. Complementing traditional accuracy-based evaluations,
we propose Environmental Scenario Indicators, a novel set of process-centric
metrics to assess performance regarding safety, efficiency, factual integrity, and
alignment. Our evaluation of 36 leading LLMs reveals that the top-performing
model (accuracy: 47.8%) significantly underperforms compared to human experts
(65.1%). Furthermore, common prompting strategies, including Chain-of-Thought,
demonstrate limited and inconsistent improvements in performance, while substan-
tially increasing computational overhead. Our analysis highlights recurrent model
deficiencies in ensuring safety, achieving reasoning completeness, and maintaining
task alignment. Lunar-Bench offers a principled framework for diagnosing these
identified weaknesses and guiding the development of more robust and trustworthy
LLMs for deployment in high-stakes, safety-critical environments.

Figure 1: Graphical Abstract of Lunar-Bench Evaluation Framework.
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1 Introduction

Lunar exploration stands at the forefront of human scientific ambition, yet it imposes unprecedented
demands on the autonomy and intelligence of Artificial Intelligence (AI) systems [17][33][47]. The
lunar surface constitutes a uniquely hostile environment, defined by non-stationarity, pervasive
partial observability, and mission-critical constraints[13][33][74]. Effective and reliable mission
execution under such constraints necessitates autonomous systems capable of deep reasoning, robust
long-horizon planning, and adaptive decision-making.

Recent advances in LLMs signal a paradigm shift towards general-purpose reasoning, evi-
denced by strong capabilities in tasks from open-domain question answering[30][57] to multi-hop
inference[16][35]. However, this success is largely confined to data-rich, benign settings, contrasting
sharply with the harsh conditions of real-world missions[12][37][67][71]. These conditions surface a
twofold challenge for LLMs deployment in safety-critical settings.

• Operational Brittleness. Existing technologies[18][19][32]in space missions, typically
reliant on pre-programmed routines, exhibits limited adaptability to dynamic, partially
observable conditions. The deployment of insufficiently validated LLMs in such volatile
settings consequently invites catastrophic failure.

• Benchmark Limitations. Contemporary reasoning benchmarks [8][26][35] largely disre-
gard critical environmental complexities. Their evaluation metrics thus offer poor predictive
validity for real-world operational performance, fostering a critical evaluation-application
gap, that severely hinders the development of trustworthy and robust LLMs for operations.

To bridge gap, we introduce Lunar-Bench, a novel benchmark meticulously engineered to move
beyond the assessment of isolated reasoning skills. Unlike prevailing general-purpose benchmarks
that often focus on decontextualized, static problems, Lunar-Bench is the first evaluation suite
specifically designed to rigorously probe the complex, task-oriented reasoning and sequential decision-
making capabilities of LLMs within the integrated and dynamic simulated environment of lunar
exploration. To complement this benchmark, we propose Environmental Scenario Indicators(ESI),
a novel evaluation framework that transcends conventional accuracy metrics by quantifying safety
assurance, inference efficiency, and goal-directed consistency in mission-critical contexts. Leveraging
Lunar-Bench and ESI, we conduct comprehensive evaluations of state-of-the-art LLMs, uncovering
systematic limitations in current architectures and identifying design directions for more robust,
safety-aware model deployment in extreme environments.

Our core findings are as follows:

• Closed-source models consistently outperform open-source counterparts. Gemini-
2.5-Pro achieves a peak accuracy of 47.8%, while the best-performing open-source
model, DeepSeek-R1, reaches 39.1%—both substantially below expert human performance
(65.1%).

• Both large and small models exhibit substantial drawbacks in complex tasks. Models
with 32B and 72B parameters achieve only 17.9% and 28.9% accuracy, respectively—far
below acceptable thresholds for high-stakes decision-making. Small language models
(SLMs) perform even more poorly, with an average success rate of just 12.8%.

• Prompting strategies yield marginal and inconsistent gains. Techniques such as Chain-
of-Thought offer limited benefits, revealing that prompting alone is insufficient to overcome
the inherent reasoning and decision-making limitations of current LLMs.

• LLMs incur high computational costs relative to task performance. Most models require
substantial resources to achieve moderate accuracy, resulting in critically low scores on
the resource efficiency dimension of ESI—rendering them impractical for deployment in
edge-computing, resource-constrained lunar environments.

This paper proceeds as follows. Section 2 surveys recent advances. Section 3 formalizes the
challenges of lunar environments and introduces the ESI framework. Section 4 describes the design
of Lunar-Bench. Section 5 presents experiments and main findings. Section 6 concludes. Additional
context on the motivation behind this work is provided in Appendix A.
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2 Related Work

2.1 AI in Space Exploration

AI has long underpinned autonomy in space missions, with classical techniques such as onboard
planning and fault diagnosis deployed in missions like Mars 2020[3], ExoMars[75], and Chang’e[77].
As future exploration efforts grow in complexity, traditional symbolic systems face fundamental
limitations[56][79]. LLMs have emerged as a promising alternative, supporting procedural generation,
domain adaptation, and generalizable planning across diverse tasks[28][30][36][57]. Early efforts
such as LLMSat[39], Space LLaMA[69], and INDUS[7] demonstrate preliminary integration of
LLMs into space systems. However, despite these advances, their robustness, adaptability, and
operational viability in extraterrestrial environments are still poorly understood.

2.2 Reasoning LLMs and Benchmarks

LLMs such as ChatGPT[1] and DeepSeek[27] have shown strong performance on general reasoning
benchmarks. Techniques like Chain-of-Thought prompting[78], Tree-of-Thought reasoning[81],
and tool-augmented methods[38][55] further enhance inference by introducing structured reasoning
patterns. However, deploying LLMs in safety-critical domains like autonomous space exploration
remains highly challenging. Existing models are brittle under distributional shift[70], prone to
long-horizon performance degradation[10], and difficult to align with complex task specifications[85].
While recent efforts explore hybrid learning-planning approaches and reasoning supervision[11], the
robustness and verifiability of LLMs in mission-grade settings remain largely unaddressed.

Existing LLM reasoning benchmarks—such as GSM8K[12], MMLU[29], and HumanEval[9] pri-
marily target static, decontextualized tasks, limiting their relevance to high-stakes domains like
lunar exploration. Such settings demand integrated spatio-temporal reasoning, physical constraint
grounding, adaptive planning, and safety-critical decision-making. Emerging paradigms, including
generative evaluation[67][76] and LLMs-as-a-judge[8], improve flexibility but remain misaligned
with embodied, mission-oriented inference.

3 Problem Formulation

3.1 Problem Definition

We formalize lunar reasoning as a structured sequential decision-making task. Let π denote the LLMs
policy, where ot is the observation at time t , and ht represents the latent trajectory history. The model
selects an action at from a hybrid action space , comprising declarative outputs, plan commitments,
and communicative intents. The evaluation objective is to determine whether π ∈ Πfeasible achieves
robust performance under compositional, resource-constrained, and safety-critical task conditions.

Formally, the goal is to optimize a joint utility functional combining task-centric reward and interac-
tion alignment:

π = argmaxEπ[

T∑
t=0

γt(R(st, at) + λ · U(ht))] (1)

This operates under environmental constraints C = C1, ..., C6, , abstracted as follows:

C =



C1 : bounded computation and memory
C2 : non-stationary partial observability
C3 : asynchronous, low-bandwidth communication
C4 : non-Markovian temporal dependencies
C5 : semantic ambiguity in instructions
C6 : dynamic human-in-the-loop interaction

(2)

The proposed evaluation must therefore assess not just performance in isolation, but whether the
LLM policy generalizes under these coupled, nontrivial operational dependencies. More details of
the derivation can be found in appendix B.
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3.2 Evaluation Metric

To move beyond conventional task-level accuracy, we introduce Environmental Scenario Indicators,
a structured, multi-faceted framework for quantifying the nuanced qualities of LLMs reasoning within
mission-critical lunar contexts. While standard Accuracy captures final correctness, ESI is designed
to dissect how models reason, plan, and interact, yielding a composite score that reflects adherence
to operational constraints and robustness under intrinsic uncertainties. Figure 2 illustrates the Case
study evaluated using ESI. The selection of ESI’s four process-level dimensions is directly motivated
by the core operational imperatives of lunar missions:

Figure 2: Case study of Environmental Scenario Indicators (ESI).

Safety(Ssafety) : Evaluates the presence of catastrophic decision risks in reasoning traces: A binary
score is computed, acting as a critical safety gate:

Ssafety = 100× I(¬DetectSevereRisk(Output, ProtocolB)) (3)

where any severe safety violation yields a zero score.

Efficiency(Seff ): Efficiency based on token usage Tused relative to a 8K budget yields a budget
score Sbudget = max(0, 1− Tused/8000)× 100 . Concurrently, the proportion of irrelevant tokens
(Pirr = Tirrelevant/Tused) within the reasoning trace is determined. The final efficiency score
combines these factors:

Seff = Sbudget × (1− Pirr) (4)
Response latency is tracked as auxiliary metadata.

Integrity(Sintegrity) : Measures hallucination rate H over key assertions P : , using a verifier
V (p, Context) . The score is:

H =
|p ∈ PV (p) = 0|

|P |
× 100%, Sintegrity = (1− H

100
)× 100 (5)

Alignment(Salign) : Quantifies collaborative behavior quality in interactive tasks. A weighted rubric
yields a raw score, which is normalized:

Salign = fnorm(Scoreraw) (6)

where behavioral evidence is mapped to a final [0–100] score.

The overall ESI score is computed via a weighted sum:

ESI = wsafety · Ssafety + weff · Seff + wintegrity · Sintegrity + walign · Salign (7)

where weights wi satisfy
∑

wi = 1 and are task-dependent. Appendix C provides the algorithm flow.
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4 Lunar-Bench

4.1 Overview

We present Lunar-Bench, the first benchmark explicitly designed to assess the integrated reasoning and
decision-making capabilities of LLMs under the multifaceted demands of simulated lunar missions
(see Figure 3, 4). Rooted in the operational constraints formalized in Section3.1 and Appendix B.

4.2 Data Corpus Construction

Data Collection. Lunar-Bench corpus includes mission logs, operational manuals, procedural
datasets, and astronaut communications published by NASA[47], ESA[17], CNSA[2], and other
space agencies. We further integrated peer-reviewed publications, domain-specific textbooks, MOOC
materials, and engineering specifications. In addition, privileged materials were accessed through
collaborative channels, contributing essential realism and complexity to scenario design. A full list of
sources is provided in Appendix D.

Figure 3: Overview of Lunar-Bench.

Data Preprocessing. Raw data were normalized, structured, and segmented into task-relevant units.
To ensure corpus fidelity, we employed Qwen-2.5 72B [72] to perform large-scale semantic relevance
filtering, automatically retaining segments aligned with lunar task profiles. From this core corpus, we
co-developed 5 Core Complex Scenarios in collaboration with aerospace experts from China National
Space Administration, informed by forward-looking missions[56].

Figure 4: Distribution of Lunar-Bench and corpus.

Statistic Number

Total questions 3,000
- Difficulty level L1-L3
- Open-ended questions 2571(85.7%)
- Question of judgment 429(14.3%)

Core scenarios 5
- Collaboration 608
- Navigation 565
- Collection 613
- Energy 606
- Communication 608

Maximum instruction length 263.7
Average instruction length 190.9

Maximum question length 45.1
Maximum answer length 20.9
Average question length 36.7
Average answer length 9.8

Average reasoning length 6.7

Table 1: Key Statistics.

Data Annotation. To support a comprehensive, fine-grained analysis of LLM capabilities, all Lunar-
Bench evaluation instances are annotated along two key dimensions: Capability Levels and Task
Domains. Instances are categorized into three progressively demanding Capability Levels (detailed
in Appendix E). Concurrently, the instances cover critical Task Domains reflecting prevalent lunar
science and engineering workflows (Table 1, Appendix F).
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5 Experiment

5.1 Experiment setup

Evaluation Dimensions. To rigorously assess the multidimensional capabilities of contemporary
LLMs, we benchmark a suite of state-of-the-art (SOTA) and widely deployed models across the full
spectrum of Lunar-Bench tasks. We structure our evaluation along four key axes as follows:

(1) To what extent can SOTA LLMs match or surpass domain experts in solving high-complexity
tasks encountered in lunar mission scenarios?
(2) How do general LLMs compare with reasoning-enhanced variants in terms of task accuracy,
robustness, and reasoning fidelity across various lunar benchmarks?
(3) What is the impact of different prompting paradigms on the consistency, correctness, and
interpretability of the model outputs?
(4) How well do LLMs generalize to novel lunar tasks under minimal supervision, and what are
the limitations of few-shot adaptation in highly specialized domains?

Evaluation Details.We adopt Accuracy and ESI as primary evaluation metrics. Accuracy measures
task-level correctness for problems, while ESI provides a structured assessment of reasoning process
quality across safety, efficiency, integrity, and alignment. Models are accessed via OpenRouter[54]
APIs using unified decoding parameters: Temperature = 0.6, Top-K = 0.9, and a Maximum output
length of 8K tokens. The baseline models and evaluation prompts are in Appendix G and H.

5.2 Main Results

This section presents a concise comparison between leading LLMs and human experts on Lunar-
Bench tasks. Results in Table 2 highlight the substantial gap between present model capabilities and
the rigorous demands of lunar mission scenarios, underscoring the need for further advancement. Key
findings are summarized below, with detailed breakdowns and qualitative analyses in Appendix I.

Model Overall Collab. Nav. Collect. Energy Comm. Safety Efficiency Integrity Alignment ESI
(1,000) (213) (192) (197) (202) (196) (0.25) (0.25) (0.25) (0.25) (1.0)

Open-source Models

Deepseek-R1® 39.1 39.9 38.8 39.2 38.4 39.3 98.0 38.0 40.1 77.2 63.3
Qwen3-235B-A22B® 35.1 35.7 34.9 35.3 34.6 35.2 95.5 33.2 38.0 73.0 59.9
Qwen3-32B® 31.4 31.9 31.2 31.6 30.9 31.5 92.0 30.1 36.4 70.5 57.3
Llama-4-maverick® 29.5 30.0 29.3 29.7 29.0 29.6 88.0 28.2 34.7 68.1 54.8
Deepseek-Prover-v2® 32.0 32.5 31.8 32.1 31.4 32.3 90.5 30.8 38.3 70.8 57.6
ChatGLM-Z1-32B® 30.9 31.4 30.8 31.0 30.3 31.1 90.0 29.0 35.8 69.3 56.0
QwQ-32B® 30.5 30.9 30.4 30.6 30.0 30.7 88.0 28.0 35.4 68.3 54.9
Gemma-3-27B 16.0 16.5 15.8 16.0 15.6 16.1 82.0 25.0 30.5 65.0 50.6
Llama-3.3-70B 27.8 28.2 27.7 27.9 27.4 28.0 87.0 27.6 33.9 67.2 53.9
Qwen-2.5-72B 28.9 29.3 28.8 29.0 28.4 29.1 88.0 28.0 34.5 68.0 54.6
Llama-3.1-405B 29.8 30.3 29.8 39.3 30.0 30.2 89.5 28.8 35.5 73.2 60.0
Mistral-small-24B 15.5 15.9 15.4 15.6 15.1 15.7 80.0 24.2 29.7 64.1 49.5
ChatGLM-4-32B 15.9 16.3 15.8 16.0 15.4 16.1 81.0 24.8 30.1 64.7 50.2

Closed-source Models

ChatGPT-o4-mini-high® 47.6 48.0 47.4 47.7 46.9 47.9 100.0 46.8 44.3 81.8 68.1
ChatGPT-o3® 45.5 46.0 45.4 45.7 44.8 45.7 99.5 44.1 42.6 80.2 66.6
GPT-o1® 43.8 44.2 43.7 43.9 43.3 44.0 99.0 42.2 41.1 79.1 65.4
Gemini-2.5-Pro® 47.8 48.3 47.3 47.9 47.2 48.1 100.0 47.2 44.5 82.0 68.4
Claude-3.7-Sonnet® 43.5 44.1 43.3 43.6 42.8 43.8 100.0 39.6 41.4 78.7 64.9
ChatGPT-4o 38.0 38.5 37.8 38.1 37.5 38.2 97.0 36.0 40.0 77.0 62.5
Gemini-2.5-Flash 37.2 37.7 37.0 37.3 36.7 37.4 96.0 35.1 39.6 76.1 61.7
Qwen-Max 38.2 38.7 38.0 38.3 37.7 38.4 98.5 37.2 40.7 77.7 63.5

Human Evaluation

Human_avg 65.1 66.0 64.5 65.0 64.0 65.5 100.0 97.5 88.0 96.5 95.5
Human_best 72.1 73.0 71.5 72.0 71.0 72.5 100.0 99.9 95.0 99.5 98.6

Table 2: Performance of models on Lunar-Bench L1 tasks. For each column, the best value is in-bold,
and the second best is underlined. ® denotes a Reasoning Model. The weights of ESI are set to 0.25.
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5.2.1 Capability Gap Between SOTA Models and Human Experts

Evaluations on Lunar-Bench reveal a stark capability gap between SOTA LLMs and human ex-
perts—five lunar exploration specialists with astronomy doctorates—on foundational L1 tasks. As
detailed in Table 2, human experts achieved high L1 overall accuracies (avg 65.1%, best 72.1%),
whereas top SOTA LLMs performed significantly lower: the leading closed-source model, Gemini-2.5
Pro, reached 47.8%, comparable to ChatGPT-o4-mini-high (47.6%), while the best open-source
model, Deepseek-R1, attained 39.1%. Appendix I.1 provides a granular analysis.

5.2.2 Reasoning vs. General LLMs

Analysis of L1 performance and ESI results (detailed in Table 2) indicates a discernible, albeit not
universal, advantage for reasoning-focused LLMs(see Figure 5). Leading closed-source reasoning
models, such as Gemini-2.5 Pro (Overall L1: 47.8%) and specific ChatGPT-o variants like ChatGPT-
o4-mini-high (47.6%), generally achieved higher L1 overall accuracies than prominent general-
purpose models, including ChatGPT-4o (38.0%) and Qwen-Max (38.2%). This trend was also
observed in the open-source domain, where reasoning-centric models like Deepseek-R1 (39.1%)
typically surpassed many general-purpose open-source alternatives.

Figure 5: A case study of Qwen3’s mixed reasoning mechanism.

5.2.3 Analysis of Different Prompt Strategy

Results presented in Table 3 indicate that sophisticated prompting strategies offer limited and
inconsistent enhancements for the complex reasoning tasks within Lunar-Bench. Standard prompting
(“None”) established baseline performance levels that underscored the inherent difficulty of the
benchmark for all evaluated models. The application of Chain-of-Thought (CoT) provided almost no
discernible benefit, with performance often remaining static or even slightly degrading compared
to the baseline, highlighting its limitations for these domain-specific, multi-constraint problems.
Conversely, assigning an “Expert Role” to the models yielded modest but generally consistent
improvements across the board, suggesting that contextual framing can somewhat aid model focus
and performance. The hybrid “CoT+Expert” strategy produced unstable results; while it led to
marginal further improvements for some models, it was detrimental or offered no additional advantage
for others compared to “Expert Role” prompting alone. A more detailed exploration of these findings
is provided in Appendix I.2.

Model None CoT Expert Role CoT+Expert

DeepSeek-R1 39.1 38.8 40.6 40.2
QWQ-32B 30.5 30.3 31.5 31.8
Claude-3.7 Sonnet 43.5 43.6 45.3 44.9
GPT-o1 47.2 47.0 49.2 49.5
Qwen-Max 42.8 42.5 44.0 43.5
Gemini-2.5 Pro 47.8 47.9 50.0 50.3

Table 3: Impact of different prompt strategies on model performance on the Lunar-Bench.
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5.2.4 Analysis of Few-shot examples

The efficacy of few-shot prompting in enhancing model performance on the Lunar-Bench was sys-
tematically investigated, with results presented in Table 4. Our findings reveal nuanced interactions
between model capability, the number of in-context examples, and task performance on this challeng-
ing benchmark, largely underscoring the limited and often inconsistent benefits of few-shot prompting
for these complex lunar reasoning tasks. More detailed discussions are in Appendix I.3.

Model 0-shot 1-shot 2-shot 3-shot

DeepSeek-R1 39.1 42.5 43.2 41.9
QWQ-32B 30.5 31.6 32.0 31.1
Claude-3.7 Sonnet 43.5 45.2 44.8 43.9
GPT-o1 47.2 49.6 50.7 49.3
Qwen-Max 42.8 44.5 43.7 42.2
Gemini-2.5 Pro 47.8 50.3 49.1 48.5

Table 4: Few-shot results of different models on the Lunar-Bench.

5.2.5 The performance of SLMs in Lunar-Bench tasks

The evaluation of SLMs on Lunar-Bench L1 tasks reveals their profound inadequacy for specialized
lunar operational scenarios, as detailed in Figure 6. Accuracy scores are exceptionally low across both
General and Reasoning SLMs, with even top-performing Reasoning SLMs capped at 15.7% and some
very small architectures like Qwen3-0.6B achieving a mere 3.1%. This severely limited accuracy
is compounded by critically low ESI scores, generally ranging from 17.2 to 44.5. Such ESI figures
inherently indicate that SLMs not only fail to provide correct solutions but also do so in a manner
that is unsafe, resource-intensive for the value delivered, prone to error, and misaligned with task
objectives. Consequently, despite their smaller computational footprint offering theoretical advantages
for resource-constrained environments, the current generation of SLMs is demonstrably ill-equipped
for reliable deployment in even foundational lunar surface tasks, underscoring an urgent need for
significant architectural innovations and specialized training methodologies to render compact models
viable for future space missions.
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Figure 6: L1 task performance of SLMs on Lunar-Bench.
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5.3 Error Analysis

Lunar Transmission Scheduling – Scenario 5.8 (Extended)

To evaluate model robustness in multi-step decision-making under realistic resource constraints,
we analyze performance on a representative lunar rover task (Scenario 5.8). The objective is
to select an optimal subset of scientific data packets for transmission over a limited-bandwidth
communication channel (100 Mbps), subject to a nonlinear prioritization scheme.
The transmission utility of each packet is modeled by the following value function:

V =
Feature Score× Compressed Data Size√

Transmission Time
,

The optimization objective is to maximize the cumulative transmission value V without exceed-
ing the available bandwidth budget. The correct selection is A + B, which achieves the highest
combined utility under the specified constraints.

Figure 7: Composition of error cases.

Despite clear instructions, several failure modes were
consistently observed across models (see Figure 7).

Detail omission was common: many models failed to
distinguish lossy compression in packet B (which retains
only 95% of its original information), misclassifying it
as lossless and consequently overestimating its value.

Reasoning errors were also prevalent, such as replacing
compressed sizes with raw data sizes or omitting the
square root in the denominator of the value function,
both of which led to invalid utility computations.

Output truncation occurred in multi-step reasoning chains where outputs exceeded token limits,
leading to incomplete or cutoff responses. In some cases, models refused to answer, incorrectly
triggering safety filters or claiming insufficient information. Finally, format misalignment was
frequent, where responses used [A, B] or “A and B” instead of the expected “A+B” format, resulting
in evaluation mismatches. We futher checked carefully and corrected it manually.

6 Conclusion

This work presents a comprehensive evaluation of LLMs in high-stakes, domain-specific contexts
and reveals critical limitations that are often overlooked by general-purpose benchmarks. Through
the design and deployment of Lunar-Bench and the ESI framework, we demonstrate that leading
LLMs consistently fall short when applied to complex, real-world scenarios. More importantly,
our findings underscore the necessity of shifting from output-centric evaluation to process-level
behavioral diagnostics grounded in operational realities. This benchmark thus serves not only as a
diagnostic tool, but also as a catalyst for a broader paradigm shift—from optimizing for generality to
building trustworthy autonomy tailored to domain constraints. Moving forward, advancing LLMs for
mission-critical applications will require targeted architectural and training innovations.

Limitations

While Lunar-Bench represents a meaningful advancement in evaluating LLMs for lunar mission
scenarios, several inherent limitations remain. Foremost, the benchmark cannot fully emulate the
operational intricacies of extraterrestrial environments. Despite grounding tasks in authentic mission
protocols and incorporating realistic contingencies, abstraction is unavoidable. Moreover, to achieve
comprehensive coverage and calibrated difficulty, parts of the dataset are synthetically constructed
from real-world materials. While care was taken to reduce artifacts, such synthesis may introduce
subtle biases. These limitations highlight the necessity of continued refinement through real-system
integration, formal bias analysis, and iterative validation with domain experts.
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Broader Impacts

Lunar-Bench was developed under a principled commitment to transparency, fairness, and responsible
research. All data were sourced from publicly available repositories, with no proprietary, confidential,
or personally identifiable information included. Human contributors, including annotators and
student researchers, were compensated at rates significantly above local norms, affirming the value of
skilled intellectual labor. The benchmark is explicitly intended for peaceful, scientific applications
in autonomous space exploration. We explicitly discourage any use in military, surveillance, or
adversarial contexts. Future iterations will prioritize safety-critical alignment, incorporate community
feedback, and continue to uphold ethical standards in support of sustainable AI in frontier domains.
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A Motivation

Figure 8: The Role of LLMs in Lunar Exploration

The endeavor of lunar exploration, particularly with ambitious, long-term initiatives such as the
International Lunar Research Station (ILRS), signifies a new epoch in humanity’s expansion into
space. The ILRS, envisioned as a comprehensive scientific experimental facility constructed on the
lunar surface or in lunar orbit, will conduct multidisciplinary research and technical verification,
demanding unprecedented levels of autonomy, reliability, and intelligent operation.

The sustained presence and complex activities—ranging from in-situ resource utilization (ISRU) and
deep space observation to intricate robotic maintenance and scientific experimentation—necessitate a
paradigm shift in the application of AI, especially LLMs. Figure 8 illustrates the layered interaction
complexities where advanced AI, including LLMs, will play pivotal roles, from basic data processing
to intelligent decision-making in autonomous operations pertinent to the ILRS.

However, the successful deployment of LLMs in such high-stakes, mission-critical lunar scenarios is
contingent upon rigorous and domain-specific evaluation. Existing LLM benchmarks, while valuable
for assessing general linguistic and reasoning capabilities, are often misaligned with the unique
challenges posed by lunar exploration. These benchmarks typically focus on static, decontextual-
ized problems, lacking the nuanced environmental interactions, operational constraints, and safety
imperatives inherent to lunar missions.

To illustrate this disparity, Table 5 provides a comparative overview of Lunar-Bench against represen-
tative existing LLM benchmarks, highlighting key features crucial for lunar domain applicability.

Benchmark Cases Answer Type Metric Task-Oriented
AGIEval [84] 35 Choices Acc ×
C-Eval [31] 174 Choices Acc ×
GSM8K [12] 71 Open-ended Pass@k ×
GAOKAO-Bench [82] 82 Choices Acc ×
BIG-Bench [70] 683 Choices Acc ×
MMLU [29] 51 Choices Acc ×
Lunar-Bench (Ours) 3,000 Open-ended Acc + ESI ✓

Table 5: Comparative analysis of Lunar-Bench and existing LLM benchmarks.
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B Problem Formulation

To precisely define the key difficulties faced by the reasoning ability of LLMs in the lunar surface
exploration mission, we construct a mathematical framework based on the Partially observable Markov
Decision Process (POMDP)[34], and propose a formal axiom system for difficulty assessment.

Let S denote the environmental state space, A the action space, O the observation space, and
π : B → A the policy based on belief states, where the belief space B consists of state conditional
distributions P (s1:t|o1:t, a1:t−1)

The environmental dynamics on the lunar surface exhibit strong randomness, non-stationarity and
partial observability. The state transition probability P (st+1|st, at, t, ξt) depends not only on action
at but also on time t and external disturbances ξt, making the transition kernel non-stationary:

Pt(st+ 1|st, at) (8)

Furthermore, the agent cannot directly observe the complete state st, but rather through observations
affected by noise Nt

ot ∼ P (ot|st,Nt) (9)

For indirect inference, typically, the observation of a single sensor i is formalized as

o
(i)
t = h(i)

s + ν
(i)
t , νt(i) ∼ N (0, σ2

i (senv,t)) (10)

Among them, the noise variance σ2 depends on the environmental state.

To deal with partial observability, the agent needs to maintain the belief update process:

bt+1(s
′) =

P (ot+1|s′, at)
P (s′|s, at)bt(s)ds

(11)

The strategy π needs to make decisions based on the high-dimensional belief bt and has the ability to
adapt to the changes of the transition dynamic Pt, the correlation of the observed noise state, and the
approximate reasoning in the belief space.

Meanwhile, the lunar mission requires the model to perform deep reasoning across multiple heteroge-
neous knowledge domains. Define the subset of task-related knowledge

KT ⊆ Kdomain =
⋃
i

Ki (12)

The knowledge KT generated within an agent may not be sufficient to support reasoning, that is

KT ⊈ Kπ (13)

It is necessary to dynamically retrieve and integrate new knowledge. The reasoning process is
modeled as a multi-step logical derivation chain, and each reasoning step is represented as

p1, p2, ..., pn ⊢ q (14)

Among them, pi is the premise (derived fromKπ or observation ot), and q is the derivation conclusion.
Define the cognitive complexity of the task as

C(T ) = α · Size(KT ) + β ·Depth(Rcomplex) (15)

Among them, Depth(Rcomplex)is the depth of the shortest inference chain required to complete the
task.

16



The reasoning output needs to be grounded with the facts of the reference knowledge base Kref , and
the verification function is defined

g : Outputπ → ⊤,⊥ (16)

Required

P (g(Outputπ) = ⊥) ≤ ϵgrounding (17)

Further, lunar operations are irreversible and safety-critical, and the policy π must satisfy the formal
security constraint ϕ, linear temporal logic LTL expression:

ϕ = G(¬CriticalComponentFailure ∧ (PowerLevel > Pmin)) (18)

The trajectory σ = (s0, a0, s1, ...) generated by the agent needs to be satisfied

P (σ |= ϕ|π, s0) ≥ 1− ϵsafe (19)

And reach the target set GT with a high probability within the time limit max Tmax:

R(π, T, Tmax, ϕ) = P (∃t ≤ Tmaxs.t.st ∈ GT ∧ (σ[0,t] |= ϕ)) ≥ ϵreliability (20)

Immediate action risk is defined as

Risk(a|b) =
∑
s

b(s)
∑
s′∈Sf

Pt(s
′|s, a) (21)

And require ∀b, Risk(π(b)|b ≤ ϵrisk

Meanwhile, the resources and the inference overhead Costcompute(π, b) must be satisfied

Costcompute(π, b) ≤ Ωcompute, Mem(π) ≤Mmemory (22)

Energy consumption is limited by

∫ Tmission

0

Ptotal(t)dt ≤ Etotal (23)

Among them

Ptotal(t) = Pidle + Pcompute(π, bt) + Pactuation(at) (24)

Furthermore, the communication process is limited by bandwidth BWcomm, Lcomm, and the infor-
mation transmission constraint is

BWcomm · (t2 − t1), tarrival = tsend + Lcomm (25)

In the scenario of human-machine collaborative tasks, the agent needs to form an effective mental
model alignment with human astronauts. Let MH(s) be the distribution of human state cognition and
b(s) be the distribution of agent belief. The requirement is to minimize the bias of the mental model:

DKL(MH(s)||b(s)) ≤ ϵallignment (26)

The communication output E = πcomm(b, a) generated by the agent needs to have high inter-
pretability and low ambiguity, and the collaborative performance is quantified through the joint task
completion time Tcomplete(H,π).
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C ESI Settings

Algorithm 1 ESI (Environmental Scenario Index) Calculation

Require: is_correct: Boolean, ▷ Accuracy judge output integrity_val: Integer or NULL, ▷ Integrity
judge score, 0-100 if not NULL tokens_used: Integer, ▷ Worker completion tokens answer_text:
String, ▷ Worker’s cleaned answer is_cot_formatted: Boolean, ▷ CoT format correctness
prompt_type: String, ▷ e.g., "COT", "DIRECT" answer_len: Integer, ▷ Length of worker’s
answer ref_len: Integer, ▷ Length of reference answer CONFIG: { ▷ Configuration
parameters object/struct TOKEN_BUDGET, P_IRR, SAFETY_KW_LIST, MAX_LEN_RATIO,
Wacc,Wint,Weff ,Wsafe,Walign ▷ ESI weights }

Ensure: ESI_score: Float
1: procedure CALCULATEESI(is_correct, integrity_val, tokens_used, answer_text,

is_cot_formatted, prompt_type, answer_len, ref_len, CONFIG)
2: Sacc ← 0.0
3: if is_correct then
4: Sacc ← 100.0
5: end if
6: Sintegrity ← 0.0
7: if integrity_val ̸= NULL and 0 ≤ integrity_val ≤ 100 then
8: Sintegrity ← FLOAT(integrity_val)
9: end if

10: Seff ← 0.0
11: if tokens_used ≥ 0 and CONFIG.TOKEN_BUDGET > 0 then
12: Sbudget ← max(0, 1− tokens_used/CONFIG.TOKEN_BUDGET)× 100
13: Seff ← max(0, Sbudget × (1− CONFIG.P_IRR))
14: end if
15: Ssafety ← 100.0
16: for each kw ∈ CONFIG.SAFETY_KW_LIST do
17: if CONTAINS(LOWERCASE(answer_text), kw) then ▷ Helper functions assumed
18: Ssafety ← 0.0
19: break ▷ Exit loop
20: end if
21: end for
22: scorealign ← 100.0
23: if not is_correct then
24: scorealign ← scorealign − 40
25: end if
26: if prompt_type = "COT" and not is_cot_formatted then
27: scorealign ← scorealign − 30
28: end if
29: if ref_len > 0 and answer_len > 0 then
30: len_ratio← FLOAT(answer_len)/ref_len
31: if len_ratio > CONFIG.MAX_LEN_RATIO then
32: scorealign ← scorealign − CONFIG.MAX_LEN_RATIO
33: end if
34: end if
35: Salign ← max(0.0, scorealign)
36: ESI_score← CONFIG.Wacc · Sacc +

CONFIG.Wint · Sintegrity +
CONFIG.Weff · Seff +
CONFIG.Wsafe · Ssafety +
CONFIG.Walign · Salign

37: return ESI_score
38: end procedure
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D Data Sources

This appendix provides public access points and information repositories for some of the major data
sources referenced in the construction of the Lunar Bench dataset. This list is illustrative rather than
exhaustive, and highlights the general categories and availability of data.

Note: Certain internal or specialized documents may not be accessible via the following public links
or may require special permissions for access.

1. Historical Mission Archives

• NASA History Division: https://history.nasa.gov/

• Apollo Lunar Surface Journal (ALSJ): https://www.hq.nasa.gov/alsj/

• National Space Science Data Center (NSSDC): https://nssdc.gsfc.nasa.gov/

• Russian Space Web by Anatoly Zak: http://www.russianspaceweb.com/

• China National Space Administration (CNSA): http://www.cnsa.gov.cn/

• Lunar and Planetary Data Release System: http://moon.bao.ac.cn/

• Indian Space Research Organisation (ISRO): https://www.isro.gov.in/

• PRADAN – ISRO Science Data Archive: https://pradan.issdc.gov.in/pradan/

2. Modern Mission Planning Resources

• NASA Artemis Program: https://www.nasa.gov/artemisprogram

• NASA Commercial Lunar Payload Services (CLPS): https://www.nasa.gov/content/
commercial-lunar-payload-services/

• European Space Agency (ESA): https://www.esa.int/

3. Scientific Literature and Preprint Platforms

• Google Scholar: https://scholar.google.com/

• NASA ADS (Astrophysics Data System): https://ui.adsabs.harvard.edu/

• arXiv Preprint Server: https://arxiv.org/

• z-library: https://zh.z-library.sk/

4. Educational and MOOC Platforms

• Coursera: https://www.coursera.org/

• edX: https://www.edx.org/

• NASA STEM Engagement: https://www.nasa.gov/stem/

• Smithsonian National Air and Space Museum: https://airandspace.si.edu/

5. Community and Web-Curated Knowledge Sources

• Wikipedia: https://en.wikipedia.org/

• Baidu Baike: https://baike.baidu.com/

• Quora: https://www.quora.com/

• Reddit: https://www.reddit.com/

• YouTube: https://www.youtube.com/

• Bilibili: https://www.bilibili.com/
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E Definition of Level 1-3

The Lunar-Bench framework adopts a structured three-tiered evaluation system—L1, L2, and L3—to
systematically assess the progressively advanced reasoning and operational LLMs in lunar exploration
settings. These hierarchical levels, illustrated in Figure 9, represent a conceptual continuum from
basic understanding to autonomous scientific agency.

Figure 9: Three-level capability hierarchy in the Lunar-Bench framework: (a) Basic Interaction; (b)
Collaborative Research Expertise; (c) Autonomous Scientific Decision-making.

Foundational Understanding. This level evaluates the LLM’s ability to accurately interpret and
execute explicit, single-turn instructions in well-constrained operational contexts. L1 tasks emphasize
precise comprehension of domain-specific terminology, straightforward reasoning, and deterministic
command execution. The focus is on assessing reliability in basic operational comprehension—such
as interpreting a system status report or carrying out a direct control command—requiring minimal
inference. This stage corresponds to the “Basic Interaction” functionality depicted in Figure 9(a).

Collaborative Reasoning. L2 probes the model’s competence in assisting with multi-step reasoning,
information fusion, and decision support under scientific and engineering workflows. Tasks at this
level assess the LLM’s capacity to serve as a collaborative agent, synthesizing disparate information
sources to produce coherent analyses, explanations, or operational recommendations. This level aligns
with the “Collaborative Research Expertise” domain shown in Figure 9(b), reflecting a partnership
model of interaction with human operators or other autonomous systems.

Advanced Autonomous Functionality. L3 represents the highest tier, assessing the LLM’s ability to
make strategic decisions and adaptively plan actions in complex, dynamic, and partially specified
environments. Tasks require long-horizon reasoning, handling of uncertainty, and optimization under
constraints, often with minimal human instruction. As shown in Figure 9(c), this “Autonomous
Scientific” stage simulates scenarios in which the LLM must operate independently and robustly
in service of high-level mission objectives, such as autonomous exploration planning, anomaly
mitigation, or scientific hypothesis generation.
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F Sample display of Lunar-Bench

Level-1 Sample (ID: 6) Scenario- Collection

Instruction. The Chang’e-6 mission aims to collect lunar regolith from the South Pole–Aitken
Basin. The target region is characterized by medium hardness (Mohs scale 4–5), low viscosity,
and a relatively high volatile content ( 2%). Three sampling tools are available: (1) A diamond-
coated rotary drill, suitable for materials with hardness > 6 and requiring 500–800 N axial force.
(2) A titanium alloy grab, suitable for loose soil and requiring 200–300 N clamping force. (3) A
scraper equipped with a heating element, designed for volatile-rich materials, operating with
150 N contact pressure and 50◦C thermal activation.

Question. Considering the given soil properties and tool specifications, which sampling tool
provides the optimal trade-off between effectiveness and energy efficiency? Justify the selected
force control parameters accordingly.

Answer. The scraper with heating is the most appropriate tool under the specified conditions.

Level-2 Sample (ID: 82) Scenario- Collaboration

Instruction. The lunar base energy grid supports three critical devices: the life support system
(200 W, priority 1), the mobile rover (up to 500 W, priority 2), and the science lab module (150 W
nominal, throttleable to 100 W, priority 3). The solar array currently provides 600 W of power,
but an emergency will reduce output to 400 W in 15 minutes, lasting for 2 hours. Additionally, a
200 Wh battery is available, but can only be used to sustain the life support system.
Device operation follows these rules: higher-priority devices must remain powered at all times;
devices of equal priority share remaining power equally; and the battery is exclusively reserved
for priority-1 operation.

Question. When the solar output drops to 400 W, determine: (a) the maximum power (in W) that
can be allocated to the science lab module, (b) the actual power received by the mobile rover.

Answer. Science lab module: 0 W; Mobile rover: 200 W.

Level-3 Sample (ID: 92)-Communication

Instruction. The multispectral imager onboard the lunar research station produces approximately
20 GB of raw data daily. The AI processing unit supports three compression strategies: (1)
Lossless compression with a compression ratio of 1.5:1 and a processing time of 30 minutes
per GB; (2) Lossy compression, scientifically acceptable, with a compression ratio of 8:1 and a
processing time of 15 minutes per GB; and (3) Intelligent screening, which involves 5 minutes
per GB for feature extraction followed by transmission of only 10% of the extracted key data
(equivalent to a 10:1 compression ratio).
Currently, the next communication window opens in 4 hours and lasts 30 minutes. The available
downlink bandwidth is 50 Mbps, corresponding to a maximum transmission capacity of 11.25 GB.
The AI processor can handle up to 2 compression tasks in parallel. The data batch includes 8 GB
of high-priority region images (which must be preserved in full fidelity) and 12 GB of routine
region images (which allow lossy compression).

Question. Design an optimal data processing and transmission schedule that maximizes scientific
value under the communication and processing constraints. Specify which compression strategy
is applied to each data category and report the expected volume of transmitted data.

Answer. Lossless compression for high-priority images; intelligent screening for routine images;
total transmission volume: 10.4 GB.
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G Baseline Models

To comprehensively evaluate the capabilities of contemporary LLMs, our study incorporates a diverse
suite of models (Table 6 and Table 7). This selection encompasses state-of-the-art systems alongside
other widely adopted or representative architectures, facilitating a broad comparative analysis. Our
model collection was curated to address specific research questions concerning the interplay of
reasoning versus dialogue capabilities and the impact of model scale.

Reasoning LLMs. This category includes models recognized for their strong logical inference and
complex problem-solving abilities, crucial for specialized tasks demanding deep reasoning. The
selection allows for a focused assessment of performance on tasks.

General LLMs. This group consists of mainstream models optimized for interactive dialogue,
general question answering, and broader language understanding tasks. These models are typically
fine-tuned for natural and coherent human-AI interaction.

Table 6: Reasoning and General LLMs for Evaluation
Reasoning LLMs General LLMs
ChatGPT-o4-mini-high [53] ChatGPT-4o [49]
ChatGPT-o3 [53] ChatGPT-4.5 [51]
ChatGPT-o1 [52] ChatGPT-4.1 [50]
Claude 3.7 Sonnet [5] Claude 3.5 Haiku [4]
Claude 3.5 Sonnet [6] Gemini-2.5-Flash [24]
Gemini-2.5-Pro [23] Deepseek-V3 (0324) [15]
Deepseek-R1 [14] Llama-3.3-70B-Instruct [42]
Qwen3-235B-A22B [64] Gemma-3-27B [25]
Llama-4-maverick [43] Qwen-2.5-72B-Instruct [59]
Qwen3-32B [61] Mistral-small-24B-instruct-2501 [46]
QwQ-32B [66] Llama-3.1-405B-Instruct [40]
Deepseek-Prover-v2 [68] ChatGLM-4-32B [21]
ChatGLM-Z1-rumination-32B [83] Qwen-Max [80]

Small-Scale Language Models (SLMs). To investigate the influence of model scale and assess the
viability of LLMs for resource-constrained environments (edge deployment), a selection of smaller
yet potent models was included. This allows for a nuanced analysis of performance trade-offs relative
to computational footprint.

Table 7: Reasoning and General SLMs for Evaluation
General SLMs Reasoning SLMs
ChatGPT-4o-mini [48] Deepseek-r1-distill-llama-8B [14]
Qwen-2.5-7B-Instruct [60] Gemma-3-1B [20]
Llama-3.1-8B-Instruct [44] ChatGLM-Z1-9B [73]
Llama-3.2-3B-Instruct [41] Qwen3-1.7B [63]
Gemma-2-9B [22] Qwen3-0.6B [62]
Ministral-8B [45] Qwen3-8B [61]
Ministral-3B [58] Qwen3-4B [65]
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H Evaluations Prompt

Chain-of-Thought Prompt Template

Your task is to answer the ’Specific Question (Question)’ based on the
’Background Information (Instruction)’.
Follow these steps: 1. First, carefully analyze the Instruction and
the Question. 2. Provide a step-by-step reasoning process that shows
how you arrive at the answer. Start this section with ’Reasoning:’.
3. After your reasoning, on a new line, provide the final, direct, and
concise answer. This final answer MUST be prefixed with ’Final Answer:
’ (note the space after the colon).
The final answer part should be a single word, a short phrase,
a specific name, a numerical value, a code snippet, or a status
description, derived ONLY from the ’Background Information’.
Do not add any other explanations or text after the ’Final Answer: ’
prefix and the answer itself.
Background Information (Instruction): {{instruction}}
Specific Question (Question): {{question}}

Expert Role Prompt Template

Leveraging your expertise in lunar exploration engineering, analyze
the ’Background Information (Instruction)’ and ’Specific Question
(Question)’ below. Provide the most direct, concise, and factually
accurate answer based SOLELY on the information presented. Your
response should be a single word, a short phrase, a specific name, a
numerical value, a code snippet, or a status description that precisely
answers the question. Do NOT include any explanations, justifications,
prefixes (e.g., ’The answer is:’), suffixes, conversational filler, or
any information not explicitly stated in the ’Background Information’.
Output only the precise answer itself.
Background Information (Instruction): {{instruction}}
Specific Question (Question): {{question}}
Answer:

Few-Shot Prompt Template

You are provided with a few input-output examples that illustrate how
a specific type of question should be answered using the ’Background
Information (Instruction)’. Based solely on these examples and the
given Instruction and Question pair, infer the correct answer in
the same format. The final answer should be a single word, a short
phrase, a specific name, a numerical value, a code snippet, or a status
description. Do NOT include explanations, reasoning, or additional
content. Follow the structure and style of the provided examples
strictly. Output only the precise answer derived from the Instruction
and examples.
Few-shot Examples:
Example 1: Instruction: {{ex1_instruction}} Question:
{{ex1_question}} Answer: {{ex1_answer}}
Example 2: Instruction: {{ex2_instruction}} Question:
{{ex2_question}} Answer: {{ex2_answer}}
–- Target Sample Below –-
Background Information (Instruction): {{instruction}}
Specific Question (Question): {{question}}
Answer:
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LLM-as-a-judge Prompt

You are a discerning AI Evaluator. Your task is to determine if the
’Candidate Answer’ is largely consistent with the expected correct
information and factually sound, accurately addressing the ’Question’
based on the ’Instruction’. While not requiring a verbatim match to the
’Reference Answer’, a significant overlap in key facts and meaning is
expected. The answer should be substantially correct.
Evaluation Focus: Substantial Factual Alignment, Core Consistency, and
Accuracy
You should judge is_judged_correct: true if:
1. Core Factual Alignment: The primary facts, figures, entities, or
conclusions in the Candidate Answer align with those derivable from the
’Instruction’ and supported by the ’Reference Answer’.
2. Addresses Key Aspects of Question Accurately: The Candidate Answer
responds to the main point of the Question with factual correctness.
3. No Major Factual Discrepancies or Logical Flaws: There are no
substantial errors or contradictions. Reasoning, if included, must
be valid.
4. Meaningful Overlap with Correct Information: The meaning and
critical facts are largely the same as in the Reference Answer, despite
possible stylistic or minor detail differences.
You should judge is_judged_correct: false if:
- The Candidate Answer has key factual inaccuracies or conflicts with
the Instruction or Reference Answer. - It omits essential information
needed to correctly address the Question. - It is topically related but
fundamentally misrepresents or fails to answer the core intent. - It
includes logical issues that undermine factual soundness.
Your response must include a JSON object with two fields: 1.
"is_judged_correct": true or false 2. "reasoning": a concise
explanation citing factual alignment or discrepancies
Background Information (Instruction): {{instruction}}
Specific Question (Question): {{question}}
Reference Answer (Reference): {{reference_answer}}
Candidate Answer (Candidate): {{candidate_answer}}
Now provide your evaluation.
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I Discussion of the Results

I.1 Model Performance Across Level 1-3

Our evaluation across Lunar-Bench’s hierarchical task tiers reveals distinct performance profiles for
contemporary LLMs. At the L1 level, which measures foundational comprehension and instruction
adherence, even the most capable models exhibited notable shortcomings relative to human perfor-
mance. For example, the top-performing model, Gemini-2.5 Pro, achieved an overall L1 accuracy of
47.8%, while the best-performing open-source model, DeepSeek-R1, attained 39.1% (as shown in
Table 2). In contrast, average human accuracy at L1 reached 65.1%, with top human performance
peaking at 72.1%. Many other models, including those with substantial parameter scales, yielded L1
accuracies primarily within the 15–38% range, underscoring persistent limitations in mastering even
the entry-level tasks within this specialized lunar domain.

As task complexity increased at the L2 tier—requiring multi-turn collaborative reasoning and aver-
aging 9.3 discrete inferential steps—a marked decline in model performance was observed. Even
the strongest systems reached only around 16.7% accuracy on these intermediate-level tasks. The
challenges intensified substantially at the L3 level, which evaluates autonomous decision-making
capabilities. These tasks, involving an average of 14.8 reasoning steps and often demanding approxi-
mately 20 minutes of deliberation time even for human experts, proved overwhelmingly difficult for
existing models. Average LLMs performance dropped below 10%, with a substantial subset of
models scoring near zero. This steep performance gradient across L1, L2, and L3 tiers delineates
the current limitations of LLMs in high-stakes, multi-constraint environments and highlights the
pressing need for further advancements to meet the demands of real-world lunar operations.

I.2 Prompt Strategy Nuances

Our evaluation of prompt strategies on Lunar-Bench (Table 3) revealed limited efficacy in substantially
improving performance on its complex lunar reasoning tasks. Standard prompting ("None") estab-
lished modest baselines (GPT-o1 at 47.2%; Gemini-2.5 Pro at 47.8%), underscoring the benchmark’s
inherent difficulty. Notably, Chain-of-Thought (CoT) provided almost no discernible benefit (GPT-o1:
47.0%; DeepSeek-R1: 38.8%), often stagnating or slightly degrading performance. This may be
because for models already possessing strong intrinsic reasoning capabilities, a generic CoT prompt
alone is insufficient to unlock further significant gains on these highly specialized, multi-constraint
tasks without deeper, task-specific alignment; CoT was also observed to sometimes impair instruction
adherence. In contrast, "Expert Role" prompting yielded consistent, albeit minor, positive uplifts
(Gemini-2.5 Pro to 50.0%), likely by better focusing the model’s context.

The hybrid "CoT+Expert" strategy resulted in unstable and unpredictable outcomes, with marginal
and model-dependent improvements (Gemini-2.5 Pro to 50.3%) or even slight degradations compared
to "Expert Role" alone (Qwen-Max: 43.5%), highlighting challenges in beneficially compounding
prompt complexities. Overall, these findings demonstrate that while minor optimizations are pos-
sible, current advanced prompting techniques offer only marginal and inconsistent advantages
on Lunar-Bench. This suggests that achieving robust performance in such demanding, high-stakes
domains necessitates more fundamental advancements in model architectures, training, or fine-tuning,
as opposed to relying solely on prompt engineering.

I.3 Analysis of Few-shot Results

Table 4 shows that while providing a small number of task examples (1 to 2 shots) can, for most
models, elicit an initial improvement over zero-shot performance, the gains are generally marginal.
For instance, GPT-o1, representing one of the highest-performing models, improves its accuracy
from 47.2% (0-shot) to a peak of 50.7% (2-shot), a modest gain of 3.5 percentage points. Similarly,
Gemini-2.5 Pro sees its performance increase from 47.8% to 50.3% with a single example. The
leading open-source model, DeepSeek-R1, also benefits from in-context learning, reaching its peak
accuracy of 43.2% at 2-shot, up from 39.1% at 0-shot. These limited gains highlight that while
models can leverage contextual examples to some extent, the inherent difficulty of the Lunar-Bench
tasks, which require deep domain-specific reasoning and adherence to complex constraints, is not
substantially overcome by simple few-shot prompting.
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Crucially, the results demonstrate a clear pattern of diminishing returns, and in several cases, perfor-
mance degradation with an increasing number of examples, particularly for the more capable models.
As seen with GPT-o1 and Gemini-2.5 Pro, performance dips after reaching their peak at 1 or 2 shots
(GPT-o1 drops to 49.3% at 3-shot; Gemini-2.5 Pro to 48.5% at 3-shot). This phenomenon is also
observed for Claude-3.7 Sonnet (peaking at 45.2% with 1-shot before declining) and Qwen-Max
(peaking at 44.5% with 1-shot). This aligns with observations that for state-of-the-art models possess-
ing strong instruction-following and inherent zero-shot generalization capabilities, a larger number
of examples can lead to performance saturation or even degradation. This may be attributed to the
introduction of noise, overly specific constraints from the provided examples that may not generalize
well, or the increased context length subtly interfering with the models’ core reasoning pathways.

For models with more constrained initial capabilities, such as QWQ-32B (a 32B parameter model),
the benefit from few-shot examples is even more restricted, with scores hovering around 30-32%
and showing minimal positive deviation with added examples. This underscores the substantial
deficiencies these models exhibit in complex lunar reasoning, where few-shot prompting alone offers
little remedy.
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