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Abstract. Image style transfer, which involves remapping the content1
of a specified image with a style image, represents a current2
research focus in the field of artificial intelligence and computer3
vision. The proliferation of image datasets and the development4
of various deep learning models have led to the introduction of5
numerous models and algorithms for image style transfer. Despite6
the notable successes of deep learning based style transfer in many7
areas, it faces significant challenges, notably high computational8
costs and limited generalization capabilities. In this paper, we9
present a simple yet effective method to address these challenges.10
The essence of our approach lies in the integration of wavelet11
transforms into whitening and coloring processes within an image12
reconstruction network (WTN). The WTN directly aligns the feature13
covariance of the content image with that of the style image. We14
demonstrate the effectiveness of our algorithm through examples,15
generating high-quality stylized images, and conduct comparisons16
with several recent methods.17
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coloring transforms19
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1. INTRODUCTION23

Image style transfer has emerged as a pivotal area of24

inquiry within the domain of computer vision, captivating25

researchers and artists alike with its potential to generate26

visually compelling and artistically enriched images. This27

innovative technique artfully melds the intrinsic content28

from one image with the stylistic attributes of another,29

effectively transplanting elements such as texture and color30

schemes to forge captivating composite creations [1, 2]. As31

illustrated in Figure 1, this process involves the complex32

fusion of the content features from image A with the distinct33

stylistic elements from the lower-left corner of images B, C,34

D, E, and F, ultimately generating unique transformed images35

that correspond to the styles of B, C, D, E, and F. This not only36

preserves the original content’s integrity but also imbues it37

with a new aesthetic essence, showcasing a remarkable blend38

of creativity and technology.39

The complexity and diversity of images pose significant40

challenges in achieving optimal results in image style transfer.41

Consequently, many scholars [3, 4] have strived to expand42
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and refine the theoretical foundations of image style transfer 43

by introducing new algorithms and models derived from 44

mathematics, physics, and computer science to enhance its 45

effectiveness. With the rapid advancement of deep learning 46

algorithms, particularly the emergence of convolutional 47

neural networks (CNNs), the field of style transfer has 48

experienced significant breakthroughs and progress. 49

Despite the swift advancement of style transfer al- 50

gorithms based on CNNs, current methods often involve 51

trade-offs among generalization, quality, and efficiency. 52

Optimization-based approaches can handle various styles 53

and yield visually pleasing outcomes but entail high com- 54

putational costs. Conversely, feedforward methods are more 55

efficient but are constrained to a predetermined number of 56

styles ormay compromise visual quality. As of now, achieving 57

universal style transfer remains a formidable challenge. 58

Developing neural networks capable of simultaneously 59

achieving generalization, quality, and efficiency poses sig- 60

nificant challenges. The primary challenge lies in accurately 61

and effectively applying extracted style features (feature 62

correlations) to render content images in a style-agnostic 63

manner. 64

To address this issue, we propose a method capable of 65

achieving versatile style transfer. The essence of this approach 66

lies in integrating wavelet transforms into whitening and 67

coloring processes within the image reconstruction network. 68

Wavelet Transfer Network (WTN) aligns the covariance of 69

content image features directly with that of style image 70

features. It substitutes wavelet pooling and unpooling for 71

the operations in the VGG encoder and decoder. Figure 2 72

illustrates the comprehensive framework of WTN. 73

Ourmotivation stems from the principle that a network’s 74

learned function should possess its inverse operation to 75

enable precise signal recovery, thereby achieving authentic 76

stylization. Once training is complete, the encoder and de- 77

coder remain fixed. Leveraging the advantageous property of 78

wavelets, which minimizes information loss, WTN can fully 79

reconstruct signals without requiring any post-processing 80

steps. This learning-free approach fundamentally differs 81

from the existing methods that necessitate predefined 82

learning of feedforward network styles and fine-tuning of 83

new styles. 84

The primary contributions of this study are as follows: 85
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Figure 1. Images combining the content of a photograph with the style of several well-known artworks. (A: The original photograph by Binyamin Mellish.
B:Woman III by Roy Lichtenstein, 1982. C: Landscape at L’Estaque by Georges Braque, 1906. D: Improvisation No. 30 (Cannons) by Vasily Kandinsky,
1913. E: The Artist Looks at Nature by Charles Sheeler, 1943. F: Starry Night and the Astronauts by Alma Thomas, 1972.)

Figure 2. The overall framework of the Wavelet Transfer Network (WTN).

(a) We propose the Wavelet Transfer Network (WTN), an86

end-to-end photorealistic style transfer model. WTN87

removes the original style through whitening and88

introduces a new style through coloring.89

(b) We integrate feature transformation with a pre-trained90

general encoder-decoder network, enabling the style91

transfer process to be implemented through straightfor-92

ward feed-forward operations.93

(c) We demonstrate the effectiveness of our method in94

universal style transfer, yielding high-quality visual95

outcomes. Furthermore, we showcase its application in96

universal texture synthesis.97

2. RELATEDWORK 98

Currently, image style transfer methods are widely applied 99

both locally and globally. These innovative methods are 100

broadly classified into two main categories: traditional 101

image style transfer and neural network-based image style 102

transfer [5], as detailed in Table I [2]. Traditional approaches, 103

predominantly example-based, utilize the image analogy 104

method to form a correlation between a pair of images. This 105

correlation is then leveraged to artistically stylize additional 106

images. However, a notable limitation of these traditional 107

methods is their dependency on paired images portraying 108

identical types of scenes. This requirement often renders 109
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Table I. Summary of image style transfer methods.

Category Method or Type Representative Applicable scenarios

Traditional image style migration

Brushstrokes render ideas Refs. [6, 7] Artistic Creation
Image analogy ideas Refs. [8, 9] Image processing

Filtering processing ideas Refs. [10] Real-time Image Processing
Texture synthesis ideas Refs. [11, 12] Image Texture Generation

Neural network-based image style migration

Based on image iteration

Gram matrix Refs. [1, 13]
Maximum mean variance Refs. [14, 15] Artistic Creation
Markov random field Refs. [15, 16] Image Processing
Deep image analog Refs. [17, 18] Image Synthesis

Relaxation optimal transmission Refs. [19]

Based on model iteration
Monostyle Refs. [20]
Multi-style Refs. [21] Real-time Image Processing

Arbitrary style Refs. [22, 23] Industrial Applications

them less effective for arbitrary style transfers where such110

specific scene congruence is lacking, thereby limiting their111

versatility in applications demanding a broader stylistic112

application.113

Gatys et al. [1] proposed an algorithm based on the114

correlations between deep features, implemented within115

an iterative optimization framework, achieving arbitrary116

stylization. Following this, scholars have developed various117

methods to address different aspects such as speed, quality,118

user control, diversity, semantic understanding, and photo-119

realism [24]. These methods are simple to implement and120

can produce near real-time results, which is beneficial for121

applications requiring the rapid processing of large volumes122

of images [25].123

Classical methods mainly match the colors and tones124

of images but are limited in scope. Research scientists125

have proposed methods such as Deep Photo Style Transfer126

(DPST) and a variant of photorealistic style transfer, WCT127

(PhotoWCT), to improve style transfer effects [24]. However,128

few of these methods demand significant computational129

resources and may result in blurred final outputs [26]. In130

contrast, our proposed method preserves the fine structure131

of images in an end-to-end manner with minimal spatial132

distortion, thus eliminating the need for additional post-133

processing steps.134

3. WAVELET TRANSFER NETWORK135

3.1 Reconstruction Decoder136

We developed a self-encoder network tailored for general137

image reconstruction tasks. For this purpose, the VGG-19138

model was selected to serve as the encoder; this component139

was kept static while a corresponding decoder network140

was trained specifically to invert the VGG features back to141

their original image formats, as depicted in Fig. 1(a). The142

architecture of the decoder mirrors that of VGG-19 up to143

the Relu_X_1 layer, incorporating layers of nearest-neighbor144

upsampling to effectively expand the feature maps. In an145

effort to thoroughly assess the utility of features extracted 146

at various depths, we extracted feature maps from five 147

distinct layers within the VGG-19 architecture, specifically 148

at Relu_X_1 layers (where X = 1, 2, 3, 4, 5), and trained 149

individual decoders for each layer [27]. To achieve high- 150

fidelity reconstruction of the input images, we employed both 151

pixel reconstruction loss and feature loss in our training 152

process [25]. 153

L= ‖Io− Ii‖22+ λ‖8(Io)−8(Ii)‖
2
2. (1) 154

In the context of this study, Ii and Io represent the input image 155

and reconstructed output, respectively, while 8 denotes the 156

VGG encoder extracting Relu_X_1 features. Additionally, 157

λ serves as the weight balancing the two losses. Upon the 158

successful conclusion of the training phase, the decoder is 159

firmly established in a static configuration—this means that 160

no further fine-tuning is undertaken [28]. It is subsequently 161

employed as a robust feature inverter, dedicated to reversing 162

the encoded features back to their original form with 163

precision and reliability [29]. 164

Building upon this foundational architecture, we in- 165

corporate the Whitening and Coloring Transform (WCT) 166

process, as detailed in Figure 3. This method employs 167

a layered approach using the VGG network, where each 168

level applies WCT to blend extracted content features with 169

style features iteratively extracted from various layers. This 170

sequential process aligns the feature covariance of the 171

content with those of the style image at each corresponding 172

level, followed by progressive reconstruction using dedicated 173

decoders for each layer. This ensures a nuanced style 174

application across multiple scales, maintaining the content’s 175

structural integrity while effectively infusing the style 176

attributes. 177

3.2 Whitening and Coloring Transforms 178

Given a pair of content images Ic and style images Is, 179

we initially extract their vectorized VGG feature maps 180
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Figure 3. The workflow of WCT.

Figure 4. The differences between WCT and PhotoWCT.

fc ∈ RC×Hc×Wc and fs ∈ RC×Hs×Ws . Hc , Wc (as well as Hs,181

Ws) represent the height and width of the content (style)182

features, while C denotes the number of channels. If fc is183

directly fed into the decoder, it will reconstruct the original184

image Ic . Subsequently, we propose the use of whitening and185

coloring transformations to adjust fc to match the statistics186

of fs. The goal of WCT is to directly transform fc to match187

the covariance matrix of fs. This process involves two steps:188

whitening and coloring transformations [30].189

As depicted in Figure 4, the workflows ofWCT and Pho-190

toWCT differ significantly. WCT employs a direct approach,191

simply upsampling whitened and colored content features to192

match the style dimensions (panel a). In contrast, PhotoWCT193

(panel b) incorporates additional steps such as unpooling194

and the use of max pooling masks, designed to preserve195

more structural details and enhance photorealism during the196

style transfer process. These enhancements in PhotoWCT197

facilitate a more refined transformation, ensuring finer198

control over spatial details and help address the common199

loss of detail seen in traditionalWCT applications, ultimately200

yielding more photorealistic outputs.201

3.2.1 Whitening Transformation202

Before whitening, we first center fc by subtracting its mean203

vector mc and linearly transform fc to obtain f̂c as shown204

in Eq. (2), ensuring that the feature maps are uncorrelated 205

(f̂c f̂ Tc = I). 206

f̂c = EcD
−

1
2

c ET
c fc . (2) 207

In this equation, Dc represents a diagonal matrix containing 208

the eigenvalues of the covariance matrix f̂c f̂ Tc , where 209

fc fc belongs to RC×C , and Ec denotes the corresponding 210

orthogonal matrix of eigenvectors. It satisfies the condition 211

fc f Tc = EcDcET
c . 212

3.2.2 Color Transformation 213

We begin by centering fs through subtraction of its mean 214

vector ms, followed by color transformation, which is 215

essentially the inverse operation of whitening, linearly 216

transforming f̂c as shown in Eq. (3), yielding f̂cs with the 217

desired correlation between feature maps 218

f̂cs = EsD
1
2
s ET

s f̂c, (f̂cs f̂ Tcs = fsf Ts ). (3) 219

Ds is a diagonal matrix containing eigenvalues of the 220

covariance matrix fsf Ts and Es is the orthogonal matrix of 221

corresponding eigenvectors. Finally, we recenter fcs by adding 222

the mean vectorms of the style, i.e., f̂cs = f̂cs+ms. 223

After WCT, we can mix f̂cs with the content feature fc as 224

shown in Eq. (4), then feed it into the decoder for the user to 225
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Figure 5. The process of pooling and unpooling.

control the intensity of stylization effect:226

f̂cs = αf̂cs+ (1−α)fc . (4)227

α serves as the style weight for the user to control the transfer228

effect.229

3.3 Wavelet Corrective Transfer230

3.3.1 Haar Wavelet Pooling and Unpooling231

We introduce Haar wavelets, referred to as the main232

components of pooling and unpooling, to elucidate the233

primary constituents of our model. Haar wavelet pooling234

consists of four kernels: {LL>, LH>, HL>, HH>}, with235

low-pass (L) and high-pass (H) filters defined as236

L> =
1
√

2
(1 1), H> =

1
√

2
(−1 1). (5)237

As a result, unlike conventional pooling operations, Haar238

wavelet pooling outputs four channels. In this study, the239

low-pass filter captures smooth surfaces and textures, while240

the high-pass filter extracts information about vertical,241

horizontal, and diagonal edge styles. For simplicity, we242

denote the output of each kernel as LL, LH , HL, and HH ,243

respectively.244

As illustrated in Figure 6, this method combines245

wavelet-based pooling/unpooling with WTN to achieve246

sophisticated style transfer. Wavelet pooling decomposes247

images into different frequency components, enabling de-248

tailed manipulation at various scales. Multiple modules249

adjust the content features to match the style’s covariance250

properties, while skip connections preserve high-frequency251

details, ensuring that the final output retains both the252

style’s aesthetics and the content’s structural integrity. This253

approach enhances photorealistic style transfer with a focus254

on detail retention.255

Asignificant advantage of ourwavelet pooling technique256

is its ability to precisely reconstruct the original signal257

through a process calledwavelet unpooling [31]. By reversing258

the pooling operation, wavelet unpooling meticulously259

restores the signal to its initial form, utilizing element-wise260

transposed convolution followed by a summation of results261

to achieve complete signal recovery. (For an in-depth262

explanation, please refer to supplementary material.) This 263

distinctive capability enables our model to stylize images 264

while preserving their intrinsic details and substantially 265

minimizing information loss and noise amplification. In 266

stark contrast, traditional max pooling methods do not 267

possess a precise inverse function, leading to a scenario 268

where encoder-decoder networks, such as those employed 269

in WCT and PhotoWCT, are unable to achieve full signal 270

restoration [32]. This limitation underscores the superior 271

functionality of our approach in maintaining the integrity 272

and quality of the original imagery during the style transfer 273

process. 274

It should be highlighted that while Haar wavelet pooling 275

and unpooling is highly effective, it is not the only technique 276

capable of flawlessly reconstructing the original signal. 277

Fourier Transforms [33], for instance, also allow for perfect 278

reconstruction of the original data. However, while Fourier 279

Transforms analyze the signal in its entirety, Haar wavelets 280

partition the original signal into channels that capture 281

different constituent parts. This selective partitioning enables 282

Haar wavelets to achieve superior stylization effects, allowing 283

for more precise manipulation and analysis of specific signal 284

components. Consequently, Haar wavelets are preferred in 285

applications where such detailed control and stylization are 286

critical. 287

4. EXPERIMENTAL RESULTS 288

4.1 Decoder Training 289

For the multi-level stylization method, we trained five 290

reconstruction decoders corresponding to the Relu_X_1 291

(X = 1, 2, . . . , 5) layers of VGG-19. These decoders were 292

trained on the Microsoft COCO dataset, with the weight 293

balancing the two losses in Eq. (1) set to 1. 294

4.2 Style Transfer 295

To substantiate the efficacy of our proposed algorithm, 296

we provide a detailed comparative analysis against existing 297

methodologies, as illustrated in Table I. Additionally, we 298

showcase the stylization results achieved by our algorithm 299

in Fig. 6. To ensure a fair comparison, we meticulously 300

adjusted the style weights of competing methods to optimize 301
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Figure 6. The details of pooling and unpooling in WTN network.

Table II. Differences between our approach and other methods.

TNet Gatys et al. WCT PhotoWCT Ours

Arbitrary √ √
×

√ √

Efficient √ √ √
×

√

Learning-free × × ×
√ √

their stylization effects. The optimization-based method302

referenced in Refs. [10, 16] is adept at handling a wide303

array of arbitrary styles, yet it occasionally grapples with304

issues related to unexpected local minima. Conversely, while305

the technique mentioned in Ref. [14] markedly enhances306

stylization speed, it unfortunately compromises both quality307

and versatility. This often results in the generation of308

repetitive and predictable patterns that detract from the309

richness and depth of the image content.310

Table II provides a comparative analysis of our method311

against TNet, Gatys et al., WCT, and PhotoWCT based on312

three criteria: arbitrary style transfer, efficiency, and being313

learning-free. Our method, along with TNet, Gatys et al.,314

and PhotoWCT, supports arbitrary style transfer, offering315

flexibility for diverse styles, while WCT is more limited in316

this regard. In terms of efficiency, all methods, including317

ours, perform well, enabling fast processing. Additionally,318

our approach, like WCT and PhotoWCT, is learning-319

free, requiring no additional training post-deployment,320

unlike TNet and Gatys et al., which demand further fine-321

tuning. This comparison highlights our method’s balance of322

flexibility, speed, and ease of use.323

Our work closely aligns with recent approaches [3, 6,324

17] in terms of generalization but offers more appealing325

stylization results. In Ref. [9], content features are replaced326

with style features based on patch similarity, limiting327

its ability to retain content, while failing to adequately328

reflect style when transmitting only low-level information.329

Similarly, in Ref. [15], content features are adjusted to330

match the mean and variance of style features, which proves331

ineffective in capturing high-level representations of style.332

Even when trained on a set of styles, it fails to generalize well333

to unseen styles. Q.1334

Table III. Quantitative comparisons between different stylization methods.

WCT PhotoWCT TNet Gatys et al. Ours

log(Ls) 8.1 8.7 5.2 9.2 7.1
Preference/% 17.2 26.3 9.6 13.4 29.9
Time/sec 2.6 0.39 0.09 1.22 0.93

Results shown in Table III demonstrate the ineffective- 335

ness of the method in Ref. [16] in capturing and synthesizing 336

significant style patterns, especially for complex styles with 337

rich local structures and non-smooth regions. In contrast, 338

Figure 5 vividly displays the superior stylization results 339

achieved by our method. Remarkably, without the necessity 340

of learning any specific style, our approach skillfully captures 341

and replicates visually significant patterns found in style 342

images. 343

Furthermore, our method excels in ensuring that key 344

components within content images are not only preserved 345

but are also beautifully stylized, enhancing the overall visual 346

impact. This is a notable improvement over other techniques, 347

which tend to merely overlay patterns onto the smoother 348

areas of the image, often overlooking more textured or 349

detailed regions. This nuanced approach to stylization 350

underscores the advanced capabilities of our method, setting 351

it apart in terms of both effectiveness and aesthetic fidelity. 352

In addition to qualitative assessment, we quantitatively 353

evaluated the differences between different methods by 354

calculating the covariance matrix differences (Ls) on all 355

five VGG feature layers, including stylization results and 356

given style images. We randomly selected 10 content images 357

and 40 style images, calculated the average differences for 358

all styles, and present the results. The quantitative results 359

indicate that our stylization results have lower Ls, suggesting 360

closer proximity to style statistical data. Figure 7 shows the 361

actual effect of WTN after 200, 300, 400, and 500 training 362

epochs. The figure illustrates the progressive improvement 363

in style transfer quality as training advances, highlighting 364

how increased training rounds result in more refined and 365

coherent stylized outputs.Q.2 366

J. Imaging Sci. Technol. 6 May-June 2025



Chu et al.: Integrating wavelet transforms into image reconstruction networks for effective style transfer

Figure 7. Actual effect of WTN (Epoch for training 200, 300, 400, 500 rounds).

Figure 8. The loss function of Examples used in Fig. 5.

To further assess the effectiveness of our method, we367

conducted a user study to evaluate the subjective preferences368

of ours shown in Fig. 5.We used 5 content images and 30 style369

images, generating 150 results for each content/style pair370

for each method. We randomly selected 3 style images for371

each subject to evaluate. The stylized images were displayed372

side by side on a webpage in random order. Each subject373

was asked to select their favorite result for each style. The374

study indicates that our method received more votes for375

better stylization results. Exploring evaluation metrics based376

on human visual perception for general image synthesis377

problems may be an intriguing direction.378

In our comparative analysis of efficiency, we meticu-379

lously evaluated ourmethod against others in the field. Gatys380

et al.’s approach [1] is notably slower, primarily because it381

relies on iterative optimization loops that typically require at382

least 500 iterations to achieve satisfactory results. Conversely,383

methods [34] and [24] demonstrate higher efficiency as they 384

operate based on a single pass through a pre-trained network. 385

Method [2], while also leveraging a single forward pass, 386

tends to be relatively slow; this is attributed to the extensive 387

feature swapping operations that must be conducted across 388

thousands of image patches. 389

Our method maintains a commendable level of ef- 390

ficiency, though it is marginally slower compared to al- 391

ternatives [5, 26, 28, 30, 31]. This slight delay is largely 392

due to the feature value decomposition step integral to 393

the WCT. Importantly the computational load of this 394

particular step does not scale with the size of the image. 395

Instead, it is contingent solely upon the number of filters–or 396

the dimensions of these filters–highlighting a significant 397

advantage in terms of scalability and practical applicability 398

in diverse contexts where image size can vary substantially. 399

J. Imaging Sci. Technol. 7 May-June 2025



Chu et al.: Integrating wavelet transforms into image reconstruction networks for effective style transfer

5. CONCLUSION400

In this study, we introduced a sophisticated universal401

style transfer algorithm designed to obviate the need for402

individual style learning. Our approach centers around403

the deployment of an autoencoder specifically trained for404

image reconstruction. This strategic training enabled us to405

meticulously unfold the image generation process. Within406

this framework, we incorporated whitening and coloring407

transformations during the forward pass, effectively aligning408

the statistical distribution and correlation of intermediate409

features between the content and style images.410

Moreover, we developed a comprehensive multi-level411

stylization pipeline that systematically integrated style infor-412

mation at various levels, thereby significantly enhancing the413

final visual outcomes. Additionally, this innovative approach414

is not only limited to style transfer but is also highly effective415

for texture synthesis applications.416

Empirical evaluations of our algorithm reveal its excep-417

tional ability to generalize across a diverse range of arbitrary418

styles, distinctly outperforming existing state-of-the-art419

techniques. These results underscore the robustness and420

versatility of our method, setting a new benchmark in the421

field of style transfer and texture synthesis.422
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